Fourier-Analytic Proof of Quadratic Reciprocity (eBook)
118 Seiten
Wiley (Verlag)
978-1-118-03119-3 (ISBN)
MICHAEL C. BERG, PhD, is Professor of Mathematics at Loyola Marymount University, Los Angeles, California.
Hecke's Proof of Quadratic Reciprocity.
Two Equivalent Forms of Quadratic Reciprocity.
The Stone-Von Neumann Theorem.
Weil's "Acta" Paper.
Kubota and Cohomology.
The Algebraic Agreement Between the Formalisms of Weil and Kubota.
Hecke's Challenge: General Reciprocity and Fourier Analysis on the March.
Bibliography.
Index.
"Provides number theorists interested in analytic methods applied to reciprocity laws with an opportunity to explore the work of Hecke, Weil, and Kubota and their Fourier-analytic treatments..." (SciTech Book News, Vol. 24, No. 4, December 2000)
"The content of the book is very important to number theory and is well-prepared...this book will be found to be very interesting and useful by number theorists in various areas." (Mathematical Reviews, 2002a)
Erscheint lt. Verlag | 30.9.2011 |
---|---|
Reihe/Serie | Wiley Series in Pure and Applied Mathematics | Wiley Series in Pure and Applied Mathematics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Technik | |
Schlagworte | Harmonische Analyse • Mathematics • Mathematics Special Topics • Mathematik • Number Theory • Spezialthemen Mathematik • Zahlentheorie |
ISBN-10 | 1-118-03119-9 / 1118031199 |
ISBN-13 | 978-1-118-03119-3 / 9781118031193 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich