Nicht aus der Schweiz? Besuchen Sie lehmanns.de
The Fourier-Analytic Proof of Quadratic Reciprocity - Michael C. Berg

The Fourier-Analytic Proof of Quadratic Reciprocity

(Autor)

Buch | Hardcover
118 Seiten
2000
Wiley-Interscience (Verlag)
978-0-471-35830-5 (ISBN)
CHF 279,95 inkl. MwSt
This unique book explains in a straightforward fashion how quadratic reciprocity relates to some of the most powerful tools of modern number theory such as adeles, metaplectic groups, and representation, demonstrating how this abstract language actually makes sense.
A unique synthesis of the three existing Fourier-analytic treatments of quadratic reciprocity.

The relative quadratic case was first settled by Hecke in 1923, then recast by Weil in 1964 into the language of unitary group representations. The analytic proof of the general n-th order case is still an open problem today, going back to the end of Hecke's famous treatise of 1923. The Fourier-Analytic Proof of Quadratic Reciprocity provides number theorists interested in analytic methods applied to reciprocity laws with a unique opportunity to explore the works of Hecke, Weil, and Kubota.

This work brings together for the first time in a single volume the three existing formulations of the Fourier-analytic proof of quadratic reciprocity. It shows how Weil's groundbreaking representation-theoretic treatment is in fact equivalent to Hecke's classical approach, then goes a step further, presenting Kubota's algebraic reformulation of the Hecke-Weil proof. Extensive commutative diagrams for comparing the Weil and Kubota architectures are also featured.

The author clearly demonstrates the value of the analytic approach, incorporating some of the most powerful tools of modern number theory, including adèles, metaplectric groups, and representations. Finally, he points out that the critical common factor among the three proofs is Poisson summation, whose generalization may ultimately provide the resolution for Hecke's open problem.

MICHAEL C. BERG, PhD, is Professor of Mathematics at Loyola Marymount University, Los Angeles, California.

Hecke's Proof of Quadratic Reciprocity.

Two Equivalent Forms of Quadratic Reciprocity.

The Stone-Von Neumann Theorem.

Weil's "Acta" Paper.

Kubota and Cohomology.

The Algebraic Agreement Between the Formalisms of Weil and Kubota.

Hecke's Challenge: General Reciprocity and Fourier Analysis on the March.

Bibliography.

Index.

Erscheint lt. Verlag 29.2.2000
Reihe/Serie Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts
Sprache englisch
Maße 162 x 242 mm
Gewicht 397 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
ISBN-10 0-471-35830-4 / 0471358304
ISBN-13 978-0-471-35830-5 / 9780471358305
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 109,95