Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Molecular Building Blocks for Nanotechnology (eBook)

From Diamondoids to Nanoscale Materials and Applications
eBook Download: PDF
2007 | 2007
XII, 426 Seiten
Springer New York (Verlag)
978-0-387-39938-6 (ISBN)

Lese- und Medienproben

Molecular Building Blocks for Nanotechnology -
Systemvoraussetzungen
234,33 inkl. MwSt
(CHF 228,90)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book takes a 'bottom-up' approach, beginning with atoms and molecules - molecular building blocks - and assembling them to build nanostructured materials. Coverage includes Carbon Nanotubes, Nanowires, and Diamondoids. The applications presented here will enable practitioners to design and build nanometer-scale systems. These concepts have far-reaching implications: from mechanical to chemical processes, from electronic components to ultra-fine sensors, from medicine to energy, and from pharmaceuticals to agriculture and food.


This book takes a "e;bottom-up"e; approach, beginning with atoms and molecules - molecular building blocks - and assembling them to build nanostructured materials. Coverage includes Carbon Nanotubes, Nanowires, and Diamondoids. The applications presented here will enable practitioners to design and build nanometer-scale systems. These concepts have far-reaching implications: from mechanical to chemical processes, from electronic components to ultra-fine sensors, from medicine to energy, and from pharmaceuticals to agriculture and food.

Preface 6
Contents 7
List of Contributors 9
Introduction 13
References 18
Thermodynamic Properties of Diamondoids 19
1.1. Introduction 19
1.2. Pure Component Thermodynamic Properties 19
1.3. Solubilities of Diamondoids and Phase Behavior of the Binary Systems 24
1.3.1. Solubilities of Diamondoids in Supercritical Solvents 24
1.3.2. Solubilities of Adamantane in Near and Supercritical Fluids by Using a New Equation of State 28
1.3.3. Solubilities of Diamondoids in Liquid Organic Solvents 32
1.3.4. High-Pressure Phase Behavior of the Binary Systems 32
References 38
Development of Composite Materials Based on Improved Nanodiamonds 41
2.1. Introduction 41
2.2. Description of the Existing and Improved Techniques of Diamond Nanopowder Synthesis 41
2.2.1. Properties of Nanodiamonds Demonstrating Their Diamondlike Structure 45
2.2.2. Dispersity 46
2.2.3. Density 46
2.2.4. Chemical Composition 46
2.3. Fields of Application of Nanodiamond Powders 47
2.4. Conclusion 55
References 55
Diamondoids as Molecular Building Blocks for Nanotechnology 56
3.1. Introduction 56
3.2. Molecular Building Blocks (MBBs) in Nanotechnology 56
3.2.1. Diamondoid Molecules 58
3.2.2. Synthesis of Diamondoids 62
3.3. General Applications of Diamondoids 63
3.3.1. Application of Diamondoids as MBBs 64
3.3.2. Diamondoids for Drug Delivery and Drug Targeting 67
3.4. DNA-Directed Assembly and DNA- Adamantane- Amino acid Nanostructures 69
3.5. Diamondoids for Host-Guest Chemistry 72
3.6. Discussion and Conclusions 77
References 79
Surface Modification and Application of Functionalized Polymer Nanofibers 84
4.1. Attractiveness of Nanofibers 84
4.1.1. Affinity Membranes 84
4.1.2. Tissue Engineering Scaffolds 85
4.1.3. Sensors 85
4.1.4. Protective Clothing 85
4.2. Polymer Surface Modification 86
4.3. Blending and Coating 88
4.3.1. Application 88
4.4. Chemical Methods 90
4.4.1. Applications 90
4.5. Graft Polymerization 91
4.5.1. Radiation-Induced Graft Co-Polymerization 91
4.5.2. Plasma-Induced Graft Co-Polymerization 96
4.6. Advantages and Disadvantageous 99
4.7. Summary 100
References 101
Zinc Oxide Nanorod Arrays: Properties and Hydrothermal Synthesis 104
5.1. Introduction 104
5.1.1. Properties of ZnO Nanorods 104
5.2. Synthesis Methods for ZnO Nanorod Arrays 106
5.2.1. Chemical Vapor Deposition Methods 106
5.2.2. Solution Phase Methods Based on Hydrothermal Synthesis 106
5.2.3. Self-Assembly of Aligned ZnO Nanorods on Any Substrates via a Mineral Interface 109
5.2.4. Field Emission 114
5.2.5. Selected Area Assembly 116
5.2.6. Oriented Assembly of ZnO on Curved Surfaces 117
5.3. Characterization of ZnO Nanorods 120
5.3.1. Morphology of ZnO Nanorods 120
5.3.2. Crystalline Property of ZnO Nanorods 121
5.3.3. Optical Properties of ZnO Nanorods 121
5.3.4. Growth Mechanism of ZnO Nanorods 123
5.3.5. Effect of ZnO Nanorod Morphology on Growth Temperature: From Nanoneedles to Nanorods 124
5.4. Conclusion 126
References 127
Nanoparticles, Nanorods, and Other Nanostructures Assembled on Inert Substrates 130
6.1. Introduction 130
6.2. Geometry and Surface Structures of Supported Nanostructures 130
6.3. Experimental Procedure and Considerations 133
6.4. Nanostructures Assembled on Graphite 136
6.4.1. Antimony on Graphite 136
6.4.2. Aluminum on Graphite 144
6.4.3. Germanium on Graphite 148
6.5. Silicon and Germanium on Silicon Nitride 151
6.6. From Clusters and Nanocrystallites to Continuous Film 153
6.7. Conclusions and Future Outlook 157
References 158
Thermal Properties of Carbon Nanotubes 166
7.1. Introduction 166
7.2. Background 167
7.2.1. Physical Structure 167
7.2.2. Electrical Properties 169
7.3. Thermal Conductivity 171
7.3.1. Theory 171
7.3.2. Measurements 175
7.4. Thermal Conductivity Simulations 180
7.4.1. Molecular Dynamic Approach 180
7.4.2. Single-Wall Nanotubes 185
7.4.3. Y-Junction Nanotubes 186
7.4.4. CNT-Polymer Composites 188
7.5. Heat Pulse Propagation in SWNT 190
References 197
Chemical Vapor Deposition of Organized Architectures of Carbon Nanotubes for Applications 200
8.1. Introduction 200
8.2. CVD: The Process and the Structures Grown via CVD 201
8.2.1. History and State of the Art of CVD of Carbon Nanotubes 201
8.2.2. Floating Catalyst Method for Selective Growth of Carbon Nanotube Layers Using Ferrocene as a Catalyst 203
8.3. Carbon Nanotube Structures Grown by Chemical Vapor Deposition 204
8.4. Directed Growth of Carbon Nanotubes by Floating Catalyst Method on 3- D Substrates 206
8.5. Freestanding Macroscopic Tubes Made of Carbon Nanotubes 207
8.5.1. Microbrushes Made from Carbon Nanotubes 209
8.5.2. Controlled Fabrication of Hierarchically Branched Carbon Nanotubes in Pores of Porous Alumina 210
8.6. Applications of the Structures 211
8.6.1. Electron Field Emission Sources 212
8.6.2. Ionization Sensors 213
8.6.3. Membrane Filters 213
8.6.4. Nanocomposites 215
8.7. Future Perspectives, Challenges, and Possible Solutions 218
References 220
Online Size Characterization of Nanofibers and Nanotubes 224
9.1. Introduction 224
9.2. Size Classification of Nanofibers 225
9.2.1. Diameter Classification 225
9.2.2. Length Classification 227
9.3. Online Size Characterization of Carbon Nanotubes 235
9.3.1. Background on Carbon Nanotubes 235
9.3.2. Theory of Electrical Mobility 237
9.3.3. Semi-Empirical Estimate of Nanotube Charging 239
9.3.4. Experimental 240
9.3.5. Results 240
9.4. Size Characterization of Nanofibers and Nanotubes by Microscopy 247
9.4.1. Microscopy Specimen Prep and Sampling 247
9.4.2. Obtaining and Interpreting Information from the Sample 249
9.5. Conclusions 251
Nomenclature 251
Greek Letters 252
References 253
Theoretical Investigations in Retinal and Cubane 258
10.1. Introduction 258
10.2. Semiclassical and Empirical Method 259
10.3. First-Principles Calculations 260
10.3.1. Segment of Retinal Molecule 260
10.3.2. Cubane 263
References 266
Polyhedral Heteroborane Clusters for Nanotechnology 268
11.1. Introduction 268
11.2. Structural and Electronic Properties 269
11.2.1. Borane Clusters 269
11.2.2. Carborane Clusters 271
11.2.3. Metallacarborane Clusters 272
11.3. Applications 275
11.3.1. Nanoparticles 275
11.3.2. Nanomedicine 276
11.3.3. Molecular Machines 277
11.3.4. Nanoelectronics 278
11.3.5. Nanostructured Materials 280
11.4. Computational Design of Materials 283
11.5. Summary 284
References 284
Squeezing Germanium Nanostructures 287
12.1. Introduction 287
12.2. Experimental Techniques 288
12.3. Germanium Quantum Dots 289
12.3.1. Raman Peak Assignments 290
12.3.2. High-Pressure Raman Studies 291
12.3.3. Resonance Raman Scattering via High Pressure 296
12.4. Germanium Nanocrystals 297
12.4.1. Ge/ SiO2/ Quartz Nanosystem 298
12.4.2. Ge/ SiO2/ Si Nanosystem 301
12.5. Conclusion 309
References 310
Nanoengineered Biomimetic Bone- Building Blocks 313
13.1. Introduction 313
13.2. Nanostructural Strategy of Bone 314
13.2.1. Nanoscale Bone-Building Blocks 314
13.2.2. Cellular Functions of Bone Tissue 315
13.2.3. Hierarchical Tactics of Bone 316
13.2.4. Mechanism of Biological Mineralization 318
13.3. Current Scenario of Bone Grafting 320
13.4. Key Factors of an Ideal Bone Graft 323
13.4.1. Osteoconductive Bone Grafts 323
13.4.2. Osteoinductive Bone Grafts 334
13.4.3. Osteogenic Bone Grafts 335
13.5. Biomimetic Nanocomposites-A New Approach 336
13.6. Biomimetic Bone Grafts-Designs from Nature's Lessons 340
13.6.1. Rationale and Benefits of Biomimetics 340
13.6.2. Design Strategy of Biomimetic Nanocomposite Bone Grafts 342
13.7. Bone Tissue Engineering 347
13.8. Challenges and Future Directions 350
13.9. Conclusions 351
Acronyms 352
Glossry 352
References 357
Use of Nanoparticles as Building Blocks for Bioapplications 365
14.1. Introduction 365
14.2. Synthesis and Surface Modification of Nanoparticles 365
14.2.1. Synthesis of Nanoparticles 366
14.2.2. Surface Modification of Nanoparticles 367
14.3. Conjugation of Biomolecules to Nanoparticles 369
14.3.1. Attachment of Biomolecules to Nanoparticles 370
14.3.2. Biofunctionality of Biomolecules on Nanoparticles 371
14.4. Nanoparticles as Building Blocks for Bioapplications 373
14.4.1. Self-Assembly of Nanoparticles Using Biomolecules as Templates 373
14.4.2. Self-Assembly of Nanoparticles on Solid Substrates 376
14.4.3. Preparation of Hollow Spheres and Porous Materials Using Nanoparticles as Templates 378
References 380
Polymer Nanofibers for Biosensor Applications 389
15.1. Biosensors: Definition 389
15.2. Classification and Types 389
15.2.1. Electrochemical Sensors 389
15.2.2. Optical Sensors 391
15.2.3. Acoustic Sensors 391
15.2.4. Immunosensors 392
15.3. Limitations of Biosensors 393
15.4. Significance of Nanofibers for Biosensor Applications 393
15.5. Biosensors from Polymer Nanofibers-Review 394
15.5.1. Fabrication of Biosensors Using Polymer Nanofibers 395
15.5.2. Glucose Sensor 396
15.6. Application 401
15.6.1. Biomedical Application 401
15.6.2. Environmental Monitoring 401
15.6.3. Multicomponent Analyzers 402
15.7. Conclusion 402
References 402
High-Pressure Synthesis of Carbon Nanostructured Superhard Materials 405
16.1. Introduction 405
16.2. Synthesis of Superhard Materials 406
16.3. Structure of Superhard Materials 407
16.4. Hardness 419
16.5. Elastic Properties of C60- Based Polymerized Fullerites 424
16.6. Electrical Conductivity of 3-D-Polymerized Fullerites C60 Obtained by HPHT Treatment 426
16.7. Conclusion 429
References 430
Index 431

Erscheint lt. Verlag 14.9.2007
Reihe/Serie Topics in Applied Physics
Topics in Applied Physics
Zusatzinfo XII, 426 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
Schlagworte Biosensor • Carbon Nanotubes • Cluster • composite materials • Deposition • Fulleren • Fullerenes • Molecule • nanostructure • nanotechnology • Nanotube • particles • Pharmaceutical • semiconductor • Surface
ISBN-10 0-387-39938-0 / 0387399380
ISBN-13 978-0-387-39938-6 / 9780387399386
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 13,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Reinhold Kleiner; Werner Buckel

eBook Download (2024)
Wiley-VCH (Verlag)
CHF 69,35