Classical Geometries in Modern Contexts
Geometry of Real Inner Product Spaces
Seiten
2007
|
2., nd ed.
Springer Basel (Verlag)
978-3-7643-8540-8 (ISBN)
Springer Basel (Verlag)
978-3-7643-8540-8 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This book is based on real inner product spaces X of arbitrary (finite or infinite) dimension greater than or equal to 2. Designed as a two term graduate course, the book helps students to understand great ideas of classical geometries in a modern and general context.
A real benefit is the dimension-free approach to important geometrical theories. The only prerequisites are basic linear algebra and basic 2- and 3-dimensional real geometry.
A real benefit is the dimension-free approach to important geometrical theories. The only prerequisites are basic linear algebra and basic 2- and 3-dimensional real geometry.
Preface.- Translation Groups.- Euclidean and Hyperbolic Geometry.- Sphere Geometries of Möbius and Lie.- Lorentz Transformations.- Bibliography.- Notation and Symbols.- Index.
Sprache | englisch |
---|---|
Maße | 170 x 240 mm |
Gewicht | 600 g |
Einbandart | gebunden |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | classical geometry • Geometrie • Hardcover, Softcover / Mathematik/Geometrie • HC/Mathematik/Geometrie • Hyperbolic Geometry • Inner product space • Lorentz transformation • Sphere geometry |
ISBN-10 | 3-7643-8540-5 / 3764385405 |
ISBN-13 | 978-3-7643-8540-8 / 9783764385408 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 76,90
Nielsen Methods, Covering Spaces, and Hyperbolic Groups
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 153,90