Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Flexible Nonparametric Curve Estimation -

Flexible Nonparametric Curve Estimation

Hassan Doosti (Herausgeber)

Buch | Hardcover
VIII, 304 Seiten
2024 | 2024
Springer International Publishing (Verlag)
978-3-031-66500-4 (ISBN)
CHF 269,60 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book delves into the realm of nonparametric estimations, offering insights into essential notions such as probability density, regression, Tsallis Entropy, Residual Tsallis Entropy, and intensity functions.

Through a series of carefully crafted chapters, the theoretical foundations of flexible nonparametric estimators are examined, complemented by comprehensive numerical studies. From theorem elucidation to practical applications, the text provides a deep dive into the intricacies of nonparametric curve estimation.

Tailored for postgraduate students and researchers seeking to expand their understanding of nonparametric statistics, this book will serve as a valuable resource for anyone who wishes to explore the applications of flexible nonparametric techniques.

Dr. Hassan Doosti is a senior lecturer in Statistics at Macquarie University, where he also holds the position of Program Director for the Master of Data Science program. With a primary focus on nonparametric curve estimation, Dr. Doosti has made significant contributions to the field, with a publication record of over 50 research papers. His expertise encompasses a wide range of topics, including probability density, quantile density, and regression functions tailored for incomplete and biased samples.

- Tilted Nonparametric Regression Function Estimation.- Some Asymptotic Properties of Kernel Density Estimation Under Length-Biased and Right-Cencored Data.- Functional Data Analysis: Key Concepts and Applications.- Convolution Process revisited in finite location mixtures and GARFISMA long memory time series.- Non-parametric Estimation of Tsallis Entropy and Residual Tsallis Entropy Under -mixing Dependent Data.- Non-parametric intensity estimation for spatial point patterns with R.- A Censored Semicontinuous Regression for Modeling Clustered /Longitudinal Zero-Inflated Rates and Proportions: An Application to Colorectal Cancer.- Singular Spectrum Analysis.- Hellinger-Bhattacharyya cross-validation for shape-preserving multivariate wavelet thresholding.- Bayesian nonparametrics and mixture modelling.- A kernel scale mixture of the skew-normal distribution.- M-estimation of an intensity function and an underlying population size under random right truncation.

Erscheinungsdatum
Zusatzinfo VIII, 304 p. 79 illus., 50 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Kernel estimator • nonparametric estimation • Probability density function • Regresssion • survival function
ISBN-10 3-031-66500-7 / 3031665007
ISBN-13 978-3-031-66500-4 / 9783031665004
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
CHF 39,20