Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Data analytics & visualization all-in-one - Jack A. Hyman, Luca Massaron, Paul McFedries

Data analytics & visualization all-in-one

Buch | Softcover
832 Seiten
2024 | 1. Auflage
Wiley (Verlag)
978-1-394-24409-6 (ISBN)
CHF 66,30 inkl. MwSt
Install data analytics into your brain with this comprehensive introduction

Data Analytics & Visualization All-in-One For Dummies collects the essential information on mining, organizing, and communicating data, all in one place. Clocking in at around 850 pages, this tome of a reference delivers eight books in one, so you can build a solid foundation of knowledge in data wrangling. Data analytics professionals are highly sought after these days, and this book will put you on the path to becoming one. You’ll learn all about sources of data like data lakes, and you’ll discover how to extract data using tools like Microsoft Power BI, organize the data in Microsoft Excel, and visually present the data in a way that makes sense using a Tableau. You’ll even get an intro to the Python, R, and SQL coding needed to take your data skills to a new level. With this Dummies guide, you’ll be well on your way to becoming a priceless data jockey.



Mine data from data sources
Organize and analyze data 
Use data to tell a story with Tableau
Expand your know-how with Python and R

New and novice data analysts will love this All-in-One reference on how to make sense of data. Get ready to watch as your career in data takes off.

This All-in-One draws on the work of top authors in the For Dummies series who’ve created books designed to help data professionals do their work. The experts are Jack Hyman, Luca Massaron, Paul McFedries, John Paul Mueller, Lillian Pierson, Jonathan Reichental PhD, Joseph Schmuller PhD, Alan Simon, and Allen G. Taylor.

Introduction 1

Book 1: Learning Data Analytics & Visualizations Foundations 7

Chapter 1: Exploring Definitions and Roles 9

Chapter 2: Delving into Big Data 19

Chapter 3: Understanding Data Lakes 41

Chapter 4: Wrapping Your Head Around Data Science 51

Chapter 5: Telling Powerful Stories with Data Visualization 81

Book 2: Using Power BI for Data Analytics & Visualization 107

Chapter 1: Power BI Foundations 109

Chapter 2: The Quick Tour of Power BI 123

Chapter 3: Prepping Data for Visualization 141

Chapter 4: Tweaking Data for Primetime 167

Chapter 5: Designing and Deploying Data Models 183

Chapter 6: Tackling Visualization Basics in Power BI 203

Chapter 7: Digging into Complex Visualization and Table Data 227

Chapter 8: Sharing and Collaborating with Power BI 247

Book 3: Using Tableau for Data Analytics & Visualization 265

Chapter 1: Tableau Foundations 267

Chapter 2: Connecting Your Data 285

Chapter 3: Diving into the Tableau Prep Lifecycle 313

Chapter 4: Advanced Data Prep Approaches in Tableau 337

Chapter 5: Touring Tableau Desktop 351

Chapter 6: Storytelling Foundations in Tableau 371

Chapter 7: Visualizing Data in Tableau 391

Chapter 8: Collaborating and Publishing with Tableau Cloud 425

Book 4: Extracting Information with SQL 443

Chapter 1: SQL Foundations 445

Chapter 2: Drilling Down to the SQL Nitty-Gritty 455

Chapter 3: Values, Variables, Functions, and Expressions 487

Chapter 4: SELECT Statements and Modifying Clauses 513

Chapter 5: Tuning Queries 539

Chapter 6: Complex Query Design 557

Chapter 7: Joining Data Together in SQL 591

Book 5: Performing Statistical Data Analysis & Visualization with R Programming 605

Chapter 1: Using Open Source R for Data Science 607

Chapter 2: R: What It Does and How It Does It 623

Chapter 3: Getting Graphical 651

Chapter 4: Kicking It Up a Notch to ggplot2 671

Book 6: Applying Python Programming to Data Science 689

Chapter 1: Discovering the Match between Data Science and Python 691

Chapter 2: Using Python for Data Science and Visualization 703

Chapter 3: Getting a Crash Course in Matplotlib 721

Chapter 4: Visualizing the Data 739

Index 761

Erscheinungsdatum
Reihe/Serie For Dummies
Zusatzinfo Illustrationen
Verlagsort Hoboken
Sprache englisch
Maße 188 x 234 mm
Gewicht 1111 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Software Entwicklung User Interfaces (HCI)
Mathematik / Informatik Mathematik
ISBN-10 1-394-24409-6 / 1394244096
ISBN-13 978-1-394-24409-6 / 9781394244096
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90