Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Beginning Data Science in R 4 - Thomas Mailund

Beginning Data Science in R 4

Data Analysis, Visualization, and Modelling for the Data Scientist

(Autor)

Buch | Softcover
511 Seiten
2022 | 2nd ed.
Apress (Verlag)
978-1-4842-8154-3 (ISBN)
CHF 82,35 inkl. MwSt
Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. Updated for the R 4.0 release, this book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R. 
Beginning Data Science in R 4, Second Edition details how data science is a combination of statistics, computational science, and machine learning. You’ll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this. 
Modern data analysis requires computational skills and usually a minimum of programming. After reading and using this book, you'll have what you need to get started with R programming with data science applications.  Source code will be available to support your next projects as well.
Source code is available at github.com/Apress/beg-data-science-r4.


What You Will Learn

Perform data science and analytics using statistics and the R programming language

Visualize and explore data, including working with large data sets found in big data

Build an R package

Test and check your code

Practice version control

Profile and optimize your code



Who This Book Is For
Those with some data science or analytics background, but not necessarily experience with the R programming language.

Thomas Mailund is an associate professor in bioinformatics at Aarhus University, Denmark. His background is in math and computer science but for the last decade his main focus has been on genetics and evolutionary studies, particularly comparative genomics, speciation, and gene flow between emerging species.

1: Introduction.- 2: Introduction to R Programming.- 3: Reproducible Analysis.- 4: Data Manipulation.- 5: Visualizing Data.- 6: Working with Large Data Sets.- 7: Supervised Learning.- 8: Unsupervised Learning.- 9: Project 1: Hitting the Bottle.- 10: Deeper into R Programming.- 11: Working with Vectors and Lists.- 12: Functional Programming.- 13: Object-Oriented Programming.- 14: Building an R Package.- 15: Testing and Package Checking.- 16: Version Control.- 17: Profiling and Optimizing.- 18: Project 2: Bayesian Linear Progression.- 19: Conclusions.

Erscheinungsdatum
Zusatzinfo 100 Illustrations, black and white; XXVIII, 511 p. 100 illus.
Verlagsort Berkley
Sprache englisch
Maße 178 x 254 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Compilerbau
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte AI • Analytics • Big Data • Cloud • Coding • Data Science • Deep learning • machine learning • programming • R • Software • Statistics
ISBN-10 1-4842-8154-3 / 1484281543
ISBN-13 978-1-4842-8154-3 / 9781484281543
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Hanspeter Mössenböck

Buch | Softcover (2024)
dpunkt (Verlag)
CHF 41,85
a beginner's guide to learning llvm compiler tools and core …

von Kai Nacke

Buch | Softcover (2024)
Packt Publishing Limited (Verlag)
CHF 69,80