Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Beginning Data Science in R 4 - Thomas Mailund

Beginning Data Science in R 4 (eBook)

Data Analysis, Visualization, and Modelling for the Data Scientist

(Autor)

eBook Download: PDF
2022 | 2nd ed.
XXVIII, 511 Seiten
Apress (Verlag)
978-1-4842-8155-0 (ISBN)
Systemvoraussetzungen
56,99 inkl. MwSt
(CHF 55,65)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. Updated for the R 4.0 release, this book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R. 

Beginning Data Science in R 4, Second Edition details how data science is a combination of statistics, computational science, and machine learning. You'll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this. 

Modern data analysis requires computational skills and usually a minimum of programming. After reading and using this book, you'll have what you need to get started with R programming with data science applications.  Source code will be available to support your next projects as well.


What You Will Learn
  • Perform data science and analytics using statistics and the R programming language
  • Visualize and explore data, including working with large data sets found in big data
  • Build an R package
  • Test and check your code
  • Practice version control
  • Profile and optimize your code

Who This Book Is For

Those with some data science or analytics background, but not necessarily experience with the R programming language.


Thomas Mailund is an associate professor in bioinformatics at Aarhus University, Denmark. His background is in math and computer science but for the last decade his main focus has been on genetics and evolutionary studies, particularly comparative genomics, speciation, and gene flow between emerging species.


Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. Updated for the R 4.0 release, this book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R. Beginning Data Science in R 4, Second Edition details how data science is a combination of statistics, computational science, and machine learning. You'll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this. Modern data analysis requires computational skills and usually a minimum of programming. After reading and using this book, you'll have what you need to get started with R programming with data science applications.  Source code will be available to support your next projects as well.Source code is available at github.com/Apress/beg-data-science-r4.What You Will LearnPerform data science and analytics using statistics and the R programming languageVisualize and explore data, including working with large data sets found in big dataBuild an R packageTest and check your codePractice version controlProfile and optimize your codeWho This Book Is ForThose with some data science or analytics background, but not necessarily experience with the R programming language.
Erscheint lt. Verlag 23.6.2022
Zusatzinfo XXVIII, 511 p. 100 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Compilerbau
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte AI • Analytics • Big Data • Cloud • Coding • Data Science • Deep learning • machine learning • programming • R • Software • Statistics
ISBN-10 1-4842-8155-1 / 1484281551
ISBN-13 978-1-4842-8155-0 / 9781484281550
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
An In-Depth Guide to the Spring Framework

von Iuliana Cosmina; Rob Harrop; Chris Schaefer; Clarence Ho

eBook Download (2023)
Apress (Verlag)
CHF 61,50
A Complete Guide to How Your Arduino Language and Hardware Work …

von Norman Dunbar

eBook Download (2024)
Apress (Verlag)
CHF 55,65