Course of Pure Mathematics (eBook)
464 Seiten
Dover Publications (Verlag)
978-0-486-83261-6 (ISBN)
Originally published in 1908, this classic calculus text transformed university teaching and remains a must-read for all students of introductory mathematical analysis. Clear, rigorous explanations of the mathematics of analytical number theory and calculus cover single-variable calculus, sequences, number series, and properties of cos, sin, and log. Meticulous expositions detail the fundamental ideas underlying differential and integral calculus, the properties of infinite series, and the notion of limit. An expert in the fields of analysis and number theory, author G. H. Hardy taught for decades at both Cambridge and Oxford. A Course of Pure Mathematics is suitable for college and high school students and teachers of calculus as well as fans of pure math. Each chapter includes demanding problem sets that allow students to apply the principles directly, and four helpful Appendixes supplement the text.
English mathematician G. H. Hardy (1877–1947) specialized in number theory and mathematical analysis and is responsible for biology's Hardy-Weinberg principle of population genetics. He mentored Indian mathematician Srinivasa Ramanujan, with whom he coined the Hardy-Ramanujan number, and he wrote the classic essay, "A Mathematician's Apology."
Erscheint lt. Verlag | 28.8.2018 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Schlagworte | Analysis • analytical number theory • beginning calculus • best calculus textbook • best textbook on pure mathematics • calc primer • calc sequences • Calculus • calculus made easy • calculus primer • calculus textbook • Cambridge University Press • contructing real numbers theoretically • cos sin log • differential and integral calc • differential and integral calculus • differential calc • Differential Calculus • Differential Equations • dover books on mathematics • graduate calculus • infinite series • integral calc • Integral calculus • intro calc textbook • introduction differential calculus • introduction to calc • introduction to calculus • introductory mathematical analysis, Cambridge University • intro to calc • intro to calculus • intro to number theory • limits in math • Log • Mathematical Analysis • Mathematics textbook • math limits • math limits • notion of limit • notion of limit • number series • Number Theory • number theory primer • number theory textbook • Primer • properties of cos • pure math • Pure Mathematics • pure mathematics textbook • pure math intro • Science • sequences • sequences • simple calculus • Sin • Single Variable Calculus • textbook on analytical number theory • textbook on pure mathematics |
ISBN-10 | 0-486-83261-9 / 0486832619 |
ISBN-13 | 978-0-486-83261-6 / 9780486832616 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich