Regular, Quasi-regular and Induced Representations of Infinite-dimensional Groups
Seiten
2018
EMS Press (Verlag)
978-3-03719-181-1 (ISBN)
EMS Press (Verlag)
978-3-03719-181-1 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Almost all harmonic analysis on locally compact groups is based on the existence (and uniqueness) of a Haar measure. Therefore, it is very natural to attempt a similar construction for non-locally compact groups. The essential idea is to replace the non-existing Haar measure on an infinite-dimensional group by a suitable quasi-invariant measure on an appropriate completion of the initial group or on the completion of a homogeneous space.
The aim of the book is a systematic development, by example, of noncommutative harmonic analysis on infinite-dimensional (non-locally compact) matrix groups. We generalize the notion of regular, quasi-regular and induced representations for arbitrary infinite-dimensional groups. The central idea to verify the irreducibility is the Ismagilov conjecture. We also extend the Kirillov orbit method for the group of upper triangular matrices of infinite order.
In order to make the content accessible to a wide audience of nonspecialists,
the exposition is essentially self-contained and very few prerequisites are needed. The book is aimed at graduate and advanced undergraduate students, as well as mathematicians who wish an introduction to representations of infinite-dimensional groups.
The aim of the book is a systematic development, by example, of noncommutative harmonic analysis on infinite-dimensional (non-locally compact) matrix groups. We generalize the notion of regular, quasi-regular and induced representations for arbitrary infinite-dimensional groups. The central idea to verify the irreducibility is the Ismagilov conjecture. We also extend the Kirillov orbit method for the group of upper triangular matrices of infinite order.
In order to make the content accessible to a wide audience of nonspecialists,
the exposition is essentially self-contained and very few prerequisites are needed. The book is aimed at graduate and advanced undergraduate students, as well as mathematicians who wish an introduction to representations of infinite-dimensional groups.
Erscheinungsdatum | 08.06.2018 |
---|---|
Reihe/Serie | EMS Tracts in Mathematics ; 29 |
Sprache | englisch |
Maße | 170 x 240 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | C*-group algebras • Ergodic Measure • finite field • Hilbert-Lie group • Induced Representations • Irreducible • Ismagilov conjecture • Kirillov orbit method • quasi-invariant measure on infinite-dimensional group • Schur-Weil duality • type of factors • von neumann algebras |
ISBN-10 | 3-03719-181-3 / 3037191813 |
ISBN-13 | 978-3-03719-181-1 / 9783037191811 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 76,90
Nielsen Methods, Covering Spaces, and Hyperbolic Groups
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 153,90