Homomorphic Signature Schemes (eBook)
XI, 64 Seiten
Springer International Publishing (Verlag)
978-3-319-32115-8 (ISBN)
1 From Digital to Homomorphic Signature Schemes 1.1 Digital Signatures1.2 Digital Signature Schemes Security Definition1.2.1 Known-Message Attack1.2.2 Chosen-Message Attack 1.2.3 Adaptive Chosen-Message Attack1.3 Homomorphic Signature Schemes 1.4 Homomorphic Signature Schemes Security Definition2 Homomorphic Signature Schemes2.1 Homomorphic Signature Schemes for the Single-User Scenario2.1.1 Linearly Homomorphic Signature Schemes2.1.2 Homomorphic Signature Schemes for Polynomial Functions 2.1.3 Fully Homomorphic Signatures2.2 Homomorphic Signature Schemes for the Multi-Users Scenario2.2.1 Multiple Sources Homomorphic Signature Schemes2.2.2 Homomorphic Aggregate Signature Schemes3 Evaluation of Homomorphic Signature Schemes3.1 Hardness Assumptions3.1.1 Bilinear Groups3.1.2 RSA3.1.3 Lattices 3.2 Efficiency and Size3.3 Security3.3.1 Weak Adversary3.3.2 Strong Adversary3.4 Privacy3.5 Random Oracle Model vs. Standard Model4 State of the Art of Homomorphic Signature Schemes4.1 Linearly Homomorphic Signature Schemes Defined Over Bilinear Groups4.1.1 Signing a Linear Subspace: Signature Schemes for Network Coding, by Boneh etal. (2009)4.1.2 Homomorphic Network Coding Signatures in the Standard Model, by Attrapadungand Libert (2011)4.1.3 Computing on Authenticated Data: New Privacy Definitions and Constructions, byAttrapadung et al. (2012)4.1.4 Efficient Network Coding Signatures in the Standard Model, by Catalano et al. (2012) 4.1.5 Improved Security for Linearly Homomorphic Signatures: A Generic Framework,by Freeman (2012)Signatures, by Attrapadung et al. (2013)4.1.7 Secure Network Coding Against Intra/Inter-Generation Pollution Attacks, byGuangjun et al. (2013)4.1.8 Summary of Linearly Homomorphic Signature Schemes Defined Over BilinearGroups4.2 RSA-Based Linearly Homomorphic Signature Schemes4.2.1 Secure Network Coding Over the Integers, by Gennaro et al. (2010)4.2.2 Adaptive Pseudo-Free Groups and Applications, by Catalano et al. (2011)4.2.3 Efficient Network Coding Signatures in the Standard Model, by Catalano et al. (2012) 4.2.4 Improved Security for Linearly Homomorphic Signatures: A Generic Framework,by Freeman (2012)4.2.5 Summary of RSA-Based Linearly Homomorphic Signature Schemes4.3 Lattice-Based Linearly Homomorphic Signature Schemes 4.3.1 Linearly Homomorphic Signatures over Binary Fields and New Tools forLattice-Based Signatures, by Boneh and Freeman (2011) 4.3.2 Lattice-Based Linearly Homomorphic Signature Scheme over Binary Fields, byWang et al. (2013)4.3.3 Summary of Lattice-Based Linearly Homomorphic Signature Schemes 4.4 Homomorphic Signature Schemes for Polynomial Functions 4.4.1 Homomorphic Signatures for Polynomial Functions, by Boneh and Freeman (2011)4.4.2 Homomorphic Signatures for Polynomial Functions with Shorter Signatures, byHiromasa et al. (2013)4.4.3 Homomorphic Signatures with Efficient Verification for Polynomial Functions, byCatalano et al. (2014)4.4.4 Summary of Homomorphic Signature Schemes for Polynomial Functions4.5 Fully Homomorphic Signature Schemes4.5.1 Leveled Fully Homomorphic Signatures from Standard Lattices, by Gorbunov etal. (2014)4.5.2 Adaptively Secure Fully Homomorphic Signatures Based on Lattices, by Boyen etal. (2014) 4.5.3 Leveled Strongly-Unforgeable Identity-Based Fully Homomorphic Signatures, byWang et al. (2015)4.5.4 Summary of Fully Homomorphic Signature Schemes 4.6 Multiple Sources Linearly Homomorphic Signature Schemes 4.6.1 Signatures for Multi-Source Network Coding, by Czap and Vajda (2010) 4.6.2 Short Signature Scheme for Multi-Source Network Coding, by Yan et al. (2011)4.6.3 Efficient Multiple Sources Network Coding Signature in the Standard Model, byZhang et al. (2014) 4.6.4 Summary of Multiple Sources Linearly Homomorphic Signature Schemes 4.7 Linearly Homomorphic Aggregate Signature Schemes 4.7.1 A Homomorphic Aggregate Signature Scheme Based on Lattice, by Zhang et al.(2012)4.7.2 An Efficient Homomorphic Aggregate Signature Scheme Based on Lattice, by Jing(2014) 4.7.3 Summary of Linearly Homomorphic Aggregate Signature Schemes 5 Suitable Homomorphic Signature Schemes for eVoting, Smart Grids, and eHealth5.1 Electronic Voting5.2 Smart Grids 5.3 Electronic Health Records6 ConclusionReferences
Erscheint lt. Verlag | 21.4.2016 |
---|---|
Reihe/Serie | SpringerBriefs in Computer Science | SpringerBriefs in Computer Science |
Zusatzinfo | XI, 64 p. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik |
Schlagworte | computing on authenticated data • electronic health records • electronic voting • homomorphic signature schemes • smart cities |
ISBN-10 | 3-319-32115-3 / 3319321153 |
ISBN-13 | 978-3-319-32115-8 / 9783319321158 |
Haben Sie eine Frage zum Produkt? |
Größe: 920 KB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich