The Differential Geometry of Finsler Spaces
Springer Berlin (Verlag)
978-3-642-51612-2 (ISBN)
I: Calculus of Variations. Minkowskian Spaces.-
1. Problems in the calculus of variations in parametric form.-
2. The tangent space. The indicatrix.-
3. The metric tensor and the osculating indicatrix.-
4. The dual tangent space. The figuratrix.-
5. The Hamiltonian function.-
6. The trigonometric functions and orthogonality.-
7. Definitions of angle.-
8. Area and Volume.- II: Geodesics: Covariant Differentiation.-
1. The differential equations satisfied by the geodesics.-
2. The explicit expression for the second derivatives in the differential equations of the geodesies.-
3. The differential of a vector.-
4. Partial differentiation of vectors.-
5. Elementary properties of ?-differentiation.- III: The "Euclidean Connection" of E. Cartan.-
1. The fundamental postulates of Cartan.-
2. Properties of the covariant derivative.-
3. The general geometry of paths: the connection of Berwald.-
4. Further connections arising from the general geometry of paths.-
5. The osculating Riemannian space.-
6. Normal coordinates.- IV: The Theory of Curvature.-
1. The commutation formulae.-
2. Identities satisfied by the curvature tensors.-
3. The Bianchi identities.-
4. Geodesic deviation Ill.-
5. The first and second variations of the length integral.-
6. The curvature tensors arising from Berwald's connection.-
7. Spaces of constant curvature.-
8. The projective curvature tensors.- V: The Theory of Subspaces.-
1. The theory of curves.-
2. The projection factors.-
3. The induced connection parameters.;.-
4. Fundamental aspects of the theory of subspaces based on the euclidean connection.-
5. The Lie derivative and its application to the theory of subspaces.-
6. Surfaces imbedded in anF3.-
7. Fundamental aspects of the theory of subspaces from the point of view of the locally Minkowskian metric.-
8. The differential geometry of the indicatrix and the geometrical significance of the tensor Sijhk.-
9. Comparison between the induced and the intrinsic connection parameters.- VI: Miscellaneous Topics.-
1. Groups of motions.-
2. Conformai geometry.-
3. The equivalence problem.-
4. The theory of non-linear connections.-
5. The local imbedding theories.-
6. Two-dimensional Finsler spaces.- Appendix: Bibliographical references to related topics.- Symbols.
Erscheint lt. Verlag | 19.5.2012 |
---|---|
Reihe/Serie | Grundlehren der mathematischen Wissenschaften |
Zusatzinfo | XV, 284 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 468 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | Calculus • Differential Geometry • finsler geometry • Geometry • Tensor • Tensor Analysis |
ISBN-10 | 3-642-51612-2 / 3642516122 |
ISBN-13 | 978-3-642-51612-2 / 9783642516122 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich