The Differential Geometry of Finsler Spaces
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
978-3-540-02399-9 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
BUSEMANN has opened up new avenues of approach to Finsler geometry which are independent of the methods of classical tensor analysis. In the latter sense, therefore, a full description of this approach does not fall within the scope of this treatise, although its fundamental l significance cannot be doubted.
I: Calculus of Variations. Minkowskian Spaces.- 1. Problems in the calculus of variations in parametric form.- 2. The tangent space. The indicatrix.- 3. The metric tensor and the osculating indicatrix.- 4. The dual tangent space. The figuratrix.- 5. The Hamiltonian function.- 6. The trigonometric functions and orthogonality.- 7. Definitions of angle.- 8. Area and Volume.- II: Geodesics: Covariant Differentiation.- 1. The differential equations satisfied by the geodesics.- 2. The explicit expression for the second derivatives in the differential equations of the geodesies.- 3. The differential of a vector.- 4. Partial differentiation of vectors.- 5. Elementary properties of ?-differentiation.- III: The "Euclidean Connection" of E. Cartan.- 1. The fundamental postulates of Cartan.- 2. Properties of the covariant derivative.- 3. The general geometry of paths: the connection of Berwald.- 4. Further connections arising from the general geometry of paths.- 5. The osculating Riemannian space.- 6. Normal coordinates.- IV: The Theory of Curvature.- 1. The commutation formulae.- 1 . Commutation formulae resulting from ?-differentiation.- 2 . The three curvature tensors of Cartan.- 3 . Alternative derivation of the curvature tensors by means of exterior forms.- 2. Identities satisfied by the curvature tensors.- 3. The Bianchi identities.- 4. Geodesic deviation Ill.- 5. The first and second variations of the length integral.- 6. The curvature tensors arising from Berwald's connection.- 7. Spaces of constant curvature.- 8. The projective curvature tensors.- 1 . The generalised Weyl tensor.- 2 . The projective connection.- 3 . Projectively flat spaces; spaces with rectilinear geodesies.- V: The Theory of Subspaces.- 1. The theory of curves.- 2. The projection factors.- 3. The induced connection parameters.;.- 4. Fundamental aspects of the theory of subspaces based on the euclidean connection.- 1 . The normal curvature and associated tensors.- 2 . The D-symbolism.- 3 . The generalised equations of Gauss, Codazzi and Kuhne.- 5. The Lie derivative and its application to the theory of subspaces.- 6. Surfaces imbedded in an F3.- 7. Fundamental aspects of the theory of subspaces from the point of view of the locally Minkowskian metric.- 1 . Normal curvature.- 2 . The two second fundamental forms.- 3 . Principal directions.- 4 . The equations of Gauss and Codazzi.- 5 . Subspaces of arbitrary dimension.- 8. The differential geometry of the indicatrix and the geometrical significance of the tensor Sijhk.- 9. Comparison between the induced and the intrinsic connection parameters.- VI: Miscellaneous Topics.- 1. Groups of motions.- 2. Conformai geometry.- 3. The equivalence problem.- 4. The theory of non-linear connections.- 5. The local imbedding theories.- 6. Two-dimensional Finsler spaces.- 1 . Formal Aspects.- 2 . Certain projective changes applied to F2. Spaces with rectilinear geodesics.- 3 . Two-dimensional Finsler spaces whose principal scalar is a function of position only. Landsberg spaces.- Appendix: Bibliographical references to related topics.- Symbols.
Erscheint lt. Verlag | 1.1.1959 |
---|---|
Reihe/Serie | Grundlehren der Mathematischen Wissenschaften ; 101 |
Zusatzinfo | biography |
Verlagsort | Berlin |
Sprache | englisch |
Gewicht | 600 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
ISBN-10 | 3-540-02399-2 / 3540023992 |
ISBN-13 | 978-3-540-02399-9 / 9783540023999 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich