Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

The Differential Geometry of Finsler Spaces

(Autor)

Buch | Hardcover
299 Seiten
1959
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
978-3-540-02399-9 (ISBN)
CHF 119,75 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
The present monograph is motivated by two distinct aims. Firstly, an endeavour has been made to furnish a reasonably comprehensive account of the theory of Finsler spaces based on the methods of classical differential geometry. Secondly, it is hoped that this monograph may serve also as an introduction to a branch of differential geometry which is closely related to various topics in theoretical physics, notably analytical dynamics and geometrical optics. With this second object in mind, an attempt has been made to describe the basic aspects of the theory in some detail - even at the expense of conciseness - while in the more specialised sections of the later chapters, which might be of interest chiefly to the specialist, a more succinct style has been adopted. The fact that there exist several fundamentally different points of view with regard to Finsler geometry has rendered the task of writing a coherent account a rather difficult one. This remark is relevant not only to the development of the subject on the basis of the tensor calculus, but is applicable in an even wider sense. The extensive work of H.
BUSEMANN has opened up new avenues of approach to Finsler geometry which are independent of the methods of classical tensor analysis. In the latter sense, therefore, a full description of this approach does not fall within the scope of this treatise, although its fundamental l significance cannot be doubted.

I: Calculus of Variations. Minkowskian Spaces.- 1. Problems in the calculus of variations in parametric form.- 2. The tangent space. The indicatrix.- 3. The metric tensor and the osculating indicatrix.- 4. The dual tangent space. The figuratrix.- 5. The Hamiltonian function.- 6. The trigonometric functions and orthogonality.- 7. Definitions of angle.- 8. Area and Volume.- II: Geodesics: Covariant Differentiation.- 1. The differential equations satisfied by the geodesics.- 2. The explicit expression for the second derivatives in the differential equations of the geodesies.- 3. The differential of a vector.- 4. Partial differentiation of vectors.- 5. Elementary properties of ?-differentiation.- III: The "Euclidean Connection" of E. Cartan.- 1. The fundamental postulates of Cartan.- 2. Properties of the covariant derivative.- 3. The general geometry of paths: the connection of Berwald.- 4. Further connections arising from the general geometry of paths.- 5. The osculating Riemannian space.- 6. Normal coordinates.- IV: The Theory of Curvature.- 1. The commutation formulae.- 1 . Commutation formulae resulting from ?-differentiation.- 2 . The three curvature tensors of Cartan.- 3 . Alternative derivation of the curvature tensors by means of exterior forms.- 2. Identities satisfied by the curvature tensors.- 3. The Bianchi identities.- 4. Geodesic deviation Ill.- 5. The first and second variations of the length integral.- 6. The curvature tensors arising from Berwald's connection.- 7. Spaces of constant curvature.- 8. The projective curvature tensors.- 1 . The generalised Weyl tensor.- 2 . The projective connection.- 3 . Projectively flat spaces; spaces with rectilinear geodesies.- V: The Theory of Subspaces.- 1. The theory of curves.- 2. The projection factors.- 3. The induced connection parameters.;.- 4. Fundamental aspects of the theory of subspaces based on the euclidean connection.- 1 . The normal curvature and associated tensors.- 2 . The D-symbolism.- 3 . The generalised equations of Gauss, Codazzi and Kuhne.- 5. The Lie derivative and its application to the theory of subspaces.- 6. Surfaces imbedded in an F3.- 7. Fundamental aspects of the theory of subspaces from the point of view of the locally Minkowskian metric.- 1 . Normal curvature.- 2 . The two second fundamental forms.- 3 . Principal directions.- 4 . The equations of Gauss and Codazzi.- 5 . Subspaces of arbitrary dimension.- 8. The differential geometry of the indicatrix and the geometrical significance of the tensor Sijhk.- 9. Comparison between the induced and the intrinsic connection parameters.- VI: Miscellaneous Topics.- 1. Groups of motions.- 2. Conformai geometry.- 3. The equivalence problem.- 4. The theory of non-linear connections.- 5. The local imbedding theories.- 6. Two-dimensional Finsler spaces.- 1 . Formal Aspects.- 2 . Certain projective changes applied to F2. Spaces with rectilinear geodesics.- 3 . Two-dimensional Finsler spaces whose principal scalar is a function of position only. Landsberg spaces.- Appendix: Bibliographical references to related topics.- Symbols.

Erscheint lt. Verlag 1.1.1959
Reihe/Serie Grundlehren der Mathematischen Wissenschaften ; 101
Zusatzinfo biography
Verlagsort Berlin
Sprache englisch
Gewicht 600 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 3-540-02399-2 / 3540023992
ISBN-13 978-3-540-02399-9 / 9783540023999
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
CHF 58,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 153,90