Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Random Matrices, Random Processes and Integrable Systems -

Random Matrices, Random Processes and Integrable Systems

John Harnad (Herausgeber)

Buch | Softcover
526 Seiten
2013
Springer-Verlag New York Inc.
978-1-4614-2877-0 (ISBN)
CHF 249,95 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book explores the remarkable connections between two domains that, a priori, seem unrelated: Random matrices (together with associated random processes) and integrable systems. The relations between random matrix models and the theory of classical integrable systems have long been studied. These appear mainly in the deformation theory, when parameters characterizing the measures or the domain of localization of the eigenvalues are varied. The resulting differential equations determining the partition function and correlation functions are, remarkably, of the same type as certain equations appearing in the theory of integrable systems. They may be analyzed effectively through methods based upon the Riemann-Hilbert problem of analytic function theory and by related approaches to the study of nonlinear asymptotics in the large N limit. Associated with studies of matrix models are certain stochastic processes, the "Dyson processes", and their continuum diffusion limits, which govern the spectrum in random matrix ensembles, and may also be studied by related methods.

Random Matrices, Random Processes and Integrable Systems provides an in-depth examination of random matrices with applications over a vast variety of domains, including multivariate statistics, random growth models, and many others. Leaders in the field apply the theory of integrable systems to the solution of fundamental problems in random systems and processes using an interdisciplinary approach that sheds new light on a dynamic topic of current research.

Introduction by John Harnad

Part I Random Matrices, Random Processes and Integrable Models
Chapter 1 Random and Integrable Models in Mathematics and Physics by Pierre van Moerbeke
Chapter 2 Integrable Systems, Random Matrices, and Random Processes by Mark Adler 

Part II Random Matrices and Applications
Chapter 3 Integral Operators in Random Matrix Theory by Harold Widom
Chapter 4 Lectures on Random Matrix Models by Pavel M. Bleher
Chapter 5 Large N Asymptotics in Random Matrices by Alexander R. Its
Chapter 6 Formal Matrix Integrals and Combinatorics of Maps by B. Eynard
Chapter 7 Application of Random Matrix Theory to Multivariate Statistics by Momar Dieng and Craig A. Tracy

Reihe/Serie CRM Series in Mathematical Physics
Zusatzinfo XVIII, 526 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte Integrable Systems • nonlinear steepest descent • random growth models • random matrices • random processes • random sequences • Riemann-Hibert method
ISBN-10 1-4614-2877-7 / 1461428777
ISBN-13 978-1-4614-2877-0 / 9781461428770
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
CHF 39,20
Eine Einführung in die faszinierende Welt des Zufalls

von Norbert Henze

Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 55,95