Random Matrices, Random Processes and Integrable Systems (eBook)
XVIII, 526 Seiten
Springer New York (Verlag)
978-1-4419-9514-8 (ISBN)
This book explores the remarkable connections between two domains that, a priori, seem unrelated: Random matrices (together with associated random processes) and integrable systems. The relations between random matrix models and the theory of classical integrable systems have long been studied. These appear mainly in the deformation theory, when parameters characterizing the measures or the domain of localization of the eigenvalues are varied. The resulting differential equations determining the partition function and correlation functions are, remarkably, of the same type as certain equations appearing in the theory of integrable systems. They may be analyzed effectively through methods based upon the Riemann-Hilbert problem of analytic function theory and by related approaches to the study of nonlinear asymptotics in the large N limit. Associated with studies of matrix models are certain stochastic processes, the 'Dyson processes', and their continuum diffusion limits, which govern the spectrum in random matrix ensembles, and may also be studied by related methods.
Random Matrices, Random Processes and Integrable Systems provides an in-depth examination of random matrices with applications over a vast variety of domains, including multivariate statistics, random growth models, and many others. Leaders in the field apply the theory of integrable systems to the solution of fundamental problems in random systems and processes using an interdisciplinary approach that sheds new light on a dynamic topic of current research.
This book explores the remarkable connections between two domains that, a priori, seem unrelated: Random matrices (together with associated random processes) and integrable systems. The relations between random matrix models and the theory of classical integrable systems have long been studied. These appear mainly in the deformation theory, when parameters characterizing the measures or the domain of localization of the eigenvalues are varied. The resulting differential equations determining the partition function and correlation functions are, remarkably, of the same type as certain equations appearing in the theory of integrable systems. They may be analyzed effectively through methods based upon the Riemann-Hilbert problem of analytic function theory and by related approaches to the study of nonlinear asymptotics in the large N limit. Associated with studies of matrix models are certain stochastic processes, the "e;Dyson processes"e;, and their continuum diffusion limits, which govern the spectrum in random matrix ensembles, and may also be studied by related methods. Random Matrices, Random Processes and Integrable Systems provides an in-depth examination of random matrices with applications over a vast variety of domains, including multivariate statistics, random growth models, and many others. Leaders in the field apply the theory of integrable systems to the solution of fundamental problems in random systems and processes using an interdisciplinary approach that sheds new light on a dynamic topic of current research.
Introduction by John HarnadPart I Random Matrices, Random Processes and Integrable ModelsChapter 1 Random and Integrable Models in Mathematics and Physics by Pierre van MoerbekeChapter 2 Integrable Systems, Random Matrices, and Random Processes by Mark Adler Part II Random Matrices and ApplicationsChapter 3 Integral Operators in Random Matrix Theory by Harold WidomChapter 4 Lectures on Random Matrix Models by Pavel M. BleherChapter 5 Large N Asymptotics in Random Matrices by Alexander R. ItsChapter 6 Formal Matrix Integrals and Combinatorics of Maps by B. EynardChapter 7 Application of Random Matrix Theory to Multivariate Statistics by Momar Dieng and Craig A. Tracy
Erscheint lt. Verlag | 6.5.2011 |
---|---|
Reihe/Serie | CRM Series in Mathematical Physics | CRM Series in Mathematical Physics |
Zusatzinfo | XVIII, 526 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Naturwissenschaften ► Physik / Astronomie ► Allgemeines / Lexika | |
Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Technik | |
Schlagworte | Integrable Systems • nonlinear steepest descent • random growth models • random matrices • random processes • random sequences • Riemann-Hibert method |
ISBN-10 | 1-4419-9514-5 / 1441995145 |
ISBN-13 | 978-1-4419-9514-8 / 9781441995148 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich