Differentiable Manifolds
Springer Berlin (Verlag)
978-3-642-61754-6 (ISBN)
I. Notions About Manifolds.-
1. The Notion of a Manifold and a Differentiable Structure.-
2. Partition of Unity. Functions on Product Spaces.-
3. Maps and Imbeddings of Manifolds.- II. Differential Forms.-
4. Differential Forms of Even Type.-
5. Differential Forms of Odd Type. Orientation of Manifolds and Maps.-
6. Chains. Stokes' Formula.-
7. Double Forms.- III. Currents.-
8. Definition of Currents.-
9. The Vector Spaces E, D, Ep, and Dp.-
10. The Vector Spaces D´, E´, D´p, and E´p.-
11. Boundary of a Current. Image of a Current by a Map.-
12. Double Currents.-
13. Transformations of Double Forms and Currents by a Map.-
14. Homotopy Formulas.-
15. Regularization.-
16. Operators Associated with a Double Current.-
17. Reflexitivity of E and D. Regular Operators and Regularizing Operators.- IV. Homologies.-
18. Homology Groups.-
19. Homologies in IRn.-
20. The Kronecker Index.-
21. Homologies Between Forms and Chains in a Manifold Endowed with a Polyhedral Subdivision.-
22. Duality in a Manifold Endowed with a Polyhedral Subdivision.-
23. Duality in Any Differentiable Manifold.- V. Harmonic Forms.-
24. Riemannian Spaces. Adjoint Form.-
25. The Metric Transpose of an Operator. The Operators ? and ?.-
26. Expressions of the Operators d, ?, and ? Using Covariant Derivatives.-
27. Properties of the Geodesic Distance.-
28. The Parametrix.-
29. The Regularity of Harmonic Currents.-
30. The Local Study of the Equation ??= ?. Elementary Kernels.-
31. The Equation ?S = T on a Compact Space. The Operators H and G.-
32. The Decomposition Formula in a Non-Compact Space.-
33. Explicit Formula for the Kronecker Index.-
34. The Analyticity of Harmonic Forms.-
35. Square Summable Harmonic Forms on aComplete Riemannian Space.- List of Notation.
Erscheint lt. Verlag | 12.10.2011 |
---|---|
Reihe/Serie | Grundlehren der mathematischen Wissenschaften |
Einführung | S.S. Chern |
Übersetzer | F.R. Smith |
Zusatzinfo | X, 170 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 288 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | Differenzierbare Mannigfaltigkeit • manifold • Rham • Riemannian manifold • Varieties |
ISBN-10 | 3-642-61754-9 / 3642617549 |
ISBN-13 | 978-3-642-61754-6 / 9783642617546 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich