Advances in Machine Learning
Springer Berlin (Verlag)
978-3-642-05223-1 (ISBN)
Keynote and Invited Talks.- Machine Learning and Ecosystem Informatics: Challenges and Opportunities.- Density Ratio Estimation: A New Versatile Tool for Machine Learning.- Transfer Learning beyond Text Classification.- Regular Papers.- Improving Adaptive Bagging Methods for Evolving Data Streams.- A Hierarchical Face Recognition Algorithm.- Estimating Likelihoods for Topic Models.- Conditional Density Estimation with Class Probability Estimators.- Linear Time Model Selection for Mixture of Heterogeneous Components.- Max-margin Multiple-Instance Learning via Semidefinite Programming.- A Reformulation of Support Vector Machines for General Confidence Functions.- Robust Discriminant Analysis Based on Nonparametric Maximum Entropy.- Context-Aware Online Commercial Intention Detection.- Feature Selection via Maximizing Neighborhood Soft Margin.- Accurate Probabilistic Error Bound for Eigenvalues of Kernel Matrix.- Community Detection on Weighted Networks: A Variational Bayesian Method.- Averaged Naive Bayes Trees: A New Extension of AODE.- Automatic Choice of Control Measurements.- Coupled Metric Learning for Face Recognition with Degraded Images.- Cost-Sensitive Boosting: Fitting an Additive Asymmetric Logistic Regression Model.- On Compressibility and Acceleration of Orthogonal NMF for POMDP Compression.- Building a Decision Cluster Forest Model to Classify High Dimensional Data with Multi-classes.- Query Selection via Weighted Entropy in Graph-Based Semi-supervised Classification.- Learning Algorithms for Domain Adaptation.- Mining Multi-label Concept-Drifting Data Streams Using Dynamic Classifier Ensemble.- Learning Continuous-Time Information Diffusion Model for Social Behavioral Data Analysis.- Privacy-Preserving Evaluation of Generalization Error and Its Applicationto Model and Attribute Selection.- Coping with Distribution Change in the Same Domain Using Similarity-Based Instance Weighting.- Monte-Carlo Tree Search in Poker Using Expected Reward Distributions.- Injecting Structured Data to Generative Topic Model in Enterprise Settings.- Weighted Nonnegative Matrix Co-Tri-Factorization for Collaborative Prediction.
Erscheint lt. Verlag | 6.10.2009 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | XV, 413 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 658 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Schlagworte | Active learning • algorithms • Artificial Intelligence • Bayesian Learning • Bayesian Methods • bootstrap aggregating • classification • custering • Data Analysis • Diffusion • face recognition • Hardcover, Softcover / Informatik, EDV/Informatik • Information Retrieval • machine learning • metric learning • Multi-Agent Learning • multiple-instance learning • Natural Language Processing • Neural networks • pattern maching • Support Vector Machine • Unsupervised Learning |
ISBN-10 | 3-642-05223-1 / 3642052231 |
ISBN-13 | 978-3-642-05223-1 / 9783642052231 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich