Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Learn Data Analysis with Python - A.J. Henley, Dave Wolf

Learn Data Analysis with Python (eBook)

Lessons in Coding

, (Autoren)

eBook Download: PDF
2018 | 1st ed.
IX, 97 Seiten
Apress (Verlag)
978-1-4842-3486-0 (ISBN)
Systemvoraussetzungen
46,99 inkl. MwSt
(CHF 45,90)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Get started using Python in data analysis with this compact practical guide. This book includes three exercises and a case study on getting data in and out of Python code in the right format. Learn Data Analysis with Python also helps you discover meaning in the data using analysis and shows you how to visualize it.  

Each lesson is, as much as possible, self-contained to allow you to dip in and out of the examples as your needs dictate. If you are already using Python for data analysis, you will find a number of things that you wish you knew how to do in Python. You can then take these techniques and apply them directly to your own projects.

If you aren't using Python for data analysis, this book takes you through the basics at the beginning to give you a solid foundation in the topic. As you work your way through the book you will have a better of idea of how to use Python for data analysis when you are finished.

What You Will Learn
  • Get data into and out of Python code
  • Prepare the data and its format
  • Find the meaning of the data
  • Visualize the data using iPython

Who This Book Is For 

Those who want to learn data analysis using Python. Some experience with Python is recommended but not required, as is some prior experience with data analysis or data science.



AJ Henley is teaching courses on data analysis using Python, Java and more.  He is a technology educator with over 20 years experience as a developer, designer and systems engineer. He is an instructor at Howard University and Montgomery College.

Dave Wolf is a certified Project Management Professional (PMP) with over twenty years' experience as a software developer, analyst and trainer.  His latest projects include collaboratively developing training materials and programming bootcamps for Java and Python.

Get started using Python in data analysis with this compact practical guide. This book includes three exercises and a case study on getting data in and out of Python code in the right format. Learn Data Analysis with Python also helps you discover meaning in the data using analysis and shows you how to visualize it.  Each lesson is, as much as possible, self-contained to allow you to dip in and out of the examples as your needs dictate. If you are already using Python for data analysis, you will find a number of things that you wish you knew how to do in Python. You can then take these techniques and apply them directly to your own projects.If you aren't using Python for data analysis, this book takes you through the basics at the beginning to give you a solid foundation in the topic. As you work your way through the book you will have a better of idea of how to use Python for data analysis when you are finished.What You Will LearnGet data into and out of Python codePrepare the data and its formatFind the meaning of the dataVisualize the data using iPythonWho This Book Is For Those who want to learn data analysis using Python. Some experience with Python is recommended but not required, as is some prior experience with data analysis or data science.

AJ Henley is teaching courses on data analysis using Python, Java and more.  He is a technology educator with over 20 years experience as a developer, designer and systems engineer. He is an instructor at Howard University and Montgomery College.Dave Wolf is a certified Project Management Professional (PMP) with over twenty years' experience as a software developer, analyst and trainer.  His latest projects include collaboratively developing training materials and programming bootcamps for Java and Python.

Table of Contents1. IntroductionHow to use this bookInstalling iPython NotebookWhat is iPython notebook?What is Anaconda?Getting StartedGetting the datasets for the workbook’s exercises2. Getting Data into and out of PythonLoading Data from CSV FilesSaving Data to CSVLoading Data from Excel FilesSaving Data to Excel FilesCombining Data from Multiple Excel Files:Loading Data from SQLSaving Data to SQLRandom Numbers and Creating Random Data3. Preparing Data is Half the BattleCleaning DataCalculating and Removing OutliersMissing Data in Pandas DataframesFiltering Inappropriate ValuesFinding Duplicate RowsRemoving Punctuation from Column ContentsRemoving Whitespace from Column ContentsStandardizing DatesStandardizing Text like SSN’s, Phone #’s and Zip CodesCreating New VariablesBinning DataApplying Function to Groups, Bins and ColumnsRanking Rows of DataCreate a Column Based on a ConditionalMaking New Columns Using FunctionsConverting String Categories to Numeric VariablesOrganizing the DataRemoving and Adding ColumnsSelecting ColumnsChange Column NameSetting Column Names to Lower CaseFinding Matching RowsFilter Rows Based on Conditions:Selecting Rows Based on ConditionsRandom Sampling Dataframe4. Finding the MeaningComputing aggregate statisticsComputing Aggregate Statistics on Matching RowsSorting DataCorrelationRegressionRegression without InterceptBasic Pivot TableRandom Sampling DataframeSelecting Pandas DataFrame Rows Based on ConditionsDistribution AnalysisCategorical Variable AnalysisTime Series Analysis5. Visualizing DataData Quality ReportGraph a Dataset - Line PlotGraph a Dataset - Bar PlotGraph a Dataset - Box PlotGraph a Dataset - HistogramGraph a Dataset - Pie ChartGraph a Dataset - Scatter PlotPlotting w/ ImagePlotting Data on a Map with BasemapPlotting a Gantt ChartSetting ticks, labels & gridsAdding legends & annotationsMoving Spines to the Center6. Practice ProblemsPivot Exercise 1Pivot Exercise 2Pivot Exercise 2Pivot Exercise 3LegendRegression Exercise 1Regression Exercise 2Regression Exercise 3Analysis ProjectNotes

Erscheint lt. Verlag 22.2.2018
Zusatzinfo IX, 97 p. 15 illus. in color.
Verlagsort Berkeley
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Programmiersprachen / -werkzeuge Python
Wirtschaft
Schlagworte Analysis • application • Big Data • Code • Data • Data Science • learn • machine learning • Program • Python • Software • source
ISBN-10 1-4842-3486-3 / 1484234863
ISBN-13 978-1-4842-3486-0 / 9781484234860
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
ein kompakter Einstieg für die Praxis

von Ralph Steyer

eBook Download (2024)
Springer Vieweg (Verlag)
CHF 34,15
Arbeiten mit NumPy, Matplotlib und Pandas

von Bernd Klein

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 29,30