Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Decision Technologies for Computational Finance -

Decision Technologies for Computational Finance

Proceedings of the fifth International Conference Computational Finance
Buch | Softcover
479 Seiten
1998 | Softcover reprint of the original 1st ed. 1998
Springer (Verlag)
978-0-7923-8309-3 (ISBN)
CHF 299,55 inkl. MwSt
This volume contains selected papers that were presented at the International Conference COMPUTATIONAL FINANCE 1997 held at London Business School on December 15-17 1997. Formerly known as Neural Networks in the Capital Markets (NNCM), this series of meetings has emerged as a truly multi-disciplinary international conference and provided an international focus for innovative research on the application of a multiplicity of advanced decision technologies to many areas of financial engineering. It has drawn upon theoretical advances in financial economics and robust methodological developments in the statistical, econometric and computer sciences. To reflect its multi-disciplinary nature, the NNCM conference has adopted the new title COMPUTATIONAL FINANCE. The papers in this volume are organised in six parts. Market Dynamics and Risk, Trading and Arbitrage strategies, Volatility and Options, Term-Structure and Factor models, Corporate Distress Models and Advances on Methodology. This years' acceptance rate (38%) reflects both the increasing interest in the conference and the Programme Committee's efforts to improve the quality of the meeting year-on-year. I would like to thank the members of the programme committee for their efforts in refereeing the papers. I also would like to thank the members of the computational finance group at London Business School and particularly Neil Burgess, Peter Bolland, Yves Bentz, and Nevil Towers for organising the meeting.

1: Market Dynamics and Risk.- Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management.- Stability Analysis and Forecasting Implications.- Time-Varying Risk Premia.- A Data Matrix to Investigate Independence, Over Reaction and/or Shock Persistence in Financial Data.- Forecasting High Frequency Exchange Rates Using Cross-Bicorrelations.- Stochastic Lotka-Volterra Systems of Competing Auto-Catalytic Agents Lead Generically to Truncated Pareto Power Wealth Distribution, Truncated Levy-Stable Intermittent Market Returns, Clustered Volatility, Booms and Crashes.- 2: Trading and Arbitrage Strategies.- Controlling Nonstationarity in Statistical Arbitrage Using a Portfolio of Cointegration Models.- Nonparametric Tests for Nonlinear Cointegration.- Comments on “A Nonparametric Test for Nonlinear Cointegration”.- Reinforcement Learning for Trading Systems and Portfolios: Immediate vs Future Rewards.- An Evolutionary Bootstrap Method for Selecting Dynamic Trading Strategies.- Discussion of “An Evolutionary Bootstrap Method for Selecting Dynamic Trading Strategies”.- Multi-Task Learning in a Neural Vector Error Correction Approach for Exchange Rate Forecasting.- Selecting Relative-Value Stocks with Nonlinear Cointegration.- 3: Volatility Modeling and Option Pricing.- Option Pricing with Neural Networks and a Homogeneity Hint.- Bootstrapping Garch(1,1) Models.- Using Illiquid Option Prices to Recover Probability Distributions.- Modeling Financial Time Series Using State Space Models.- Forecasting Properties of Neural Network Generated Volatility Estimates.- Interest Rates Structure Dynamics: A Non-Parametric Approach.- State Space ARCH: Forecasting Volatility with a Stochastic Coefficient Model.- 4: Term Structure and Factor Models.- EmpiricalAnalysis of the Australian and Canadian Money Market Yield Curves: Results Using Panel Data.- Time-Varying Factor Sensitivities in Equity Investment Management.- Discovering Structure in Finance Using Independent Component Analysis.- Fitting No Arbitrage Term Structure Models Using a Regularisation Term.- Quantification of Sector Allocation at the German Stock Market.- 5: Corporate Distress Models.- Predicting Corporate Financial Distress Using Quantitative and Qualitative Data: A Comparison of Standard and Collapsible Neural Networks.- Credit Assessment Using Evolutionary MLP Natwork.- Exploring Corporate Bankruptcy with Two-Level Self-Organizing Map.- The Ex-Ante Classification of Takeover Targets Using Neural Networks.- 6: Advances on Methodology-Short Notes.- Forecasting Non-Stationary Financial Data with OIIR-Filters and Composed Threshold Models.- Portfolio Optimisation with Cap Weight Restrictions.- Are Neural Network and Econometric Forecasts Good for Trading? Stochastic Variance Models as a Filter Rule.- Incorporating Prior Knowledge about Financial Markets through Neural Multitask Learning.- Predicting Time-Series with a Committee of Independent Experts Based on Fuzzy Rules.- Multiscale Analysis of Time Series Based on A Neuro-Fuzzy-Chaos Methodology Applied to Financial Data.- On the Market Timing Ability of Neural Networks: An Empirical Study Testing the Forecasting Performance.- Currency Forecasting Using Recurrent RBF Networks Optimized by Genetic Algorithms.- Exchange Rate Trading Using a Fast Retraining Procedure for Generalised RBF Networks.

Reihe/Serie Advances in Computational Management Science ; 2
Zusatzinfo XI, 479 p.
Verlagsort Dordrecht
Sprache englisch
Maße 160 x 240 mm
Themenwelt Wirtschaft Betriebswirtschaft / Management Finanzierung
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 0-7923-8309-5 / 0792383095
ISBN-13 978-0-7923-8309-3 / 9780792383093
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Allgemeines Steuerrecht, Abgabenordnung, Umsatzsteuer

von Manfred Bornhofen; Martin C. Bornhofen

Buch (2024)
Springer Gabler (Verlag)
CHF 39,20
Unternehmensübernahmen und Finanzierungsstrukturen

von Bernd Fahrholz; Jan-Hendrik Röver

Buch | Hardcover (2024)
Vahlen (Verlag)
CHF 179,95