Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Food Engineering Interfaces (eBook)

eBook Download: PDF
2010 | 2011
XVIII, 694 Seiten
Springer New York (Verlag)
978-1-4419-7475-4 (ISBN)

Lese- und Medienproben

Food Engineering Interfaces -
Systemvoraussetzungen
213,99 inkl. MwSt
(CHF 208,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The International Conference on Food Engineering is held every four years and draws global participation. ICEF 10 will be held in April 2008 in Chile with the theme of food engineering at interfaces. This will not be a typical proceedings with uneven contributions. Papers will be solicited from each plenary speaker plus two or three invited speakers from each topic and the goal is to publish a book that conveys the interdisciplinary spirit of the meeting as well as covers the topics in depth, creating a strong reference work. The idea is to explore how food engineers have to be prepared in years ahead not only to perform in their normal activities but also to engage in new challenges and opportunities that will make the profession more attractive, responsive, and able to create a larger impact. These challenges and opportunities are within the profession and at interfaces with other areas. A major role of engineers is to incorporate new knowledge into the profession and respond to practical needs. The goal is to explore how food engineers are integrating developments in the basic sciences of physics and chemistry, nutrition, informatics, material sciences, genomics (and other -omics), quality and safety, consumer behavior and gastronomy. Interfaces with the environment, the business sector, regulations and export markets are also important to consider.
The International Conference on Food Engineering is held every four years and draws global participation. ICEF 10 will be held in April 2008 in Chile with the theme of food engineering at interfaces. This will not be a typical proceedings with uneven contributions. Papers will be solicited from each plenary speaker plus two or three invited speakers from each topic and the goal is to publish a book that conveys the interdisciplinary spirit of the meeting as well as covers the topics in depth, creating a strong reference work. The idea is to explore how food engineers have to be prepared in years ahead not only to perform in their normal activities but also to engage in new challenges and opportunities that will make the profession more attractive, responsive, and able to create a larger impact. These challenges and opportunities are within the profession and at interfaces with other areas. A major role of engineers is to incorporate new knowledge into the profession and respond to practical needs. The goal is to explore how food engineers are integrating developments in the basic sciences of physics and chemistry, nutrition, informatics, material sciences, genomics (and other -omics), quality and safety, consumer behavior and gastronomy. Interfaces with the environment, the business sector, regulations and export markets are also important to consider.

Preface 6
Acknowledgments 8
Contents 10
Contributors 14
Part I: Selected Topics in Food Engineering 20
Chapter 1: The Beginning, Current, and Future of Food Engineering: A Perspective 21
1.1 Introduction 21
1.2 Scope of Food Engineering 22
1.3 Definitions of Food Engineering 22
1.4 Origins of Food Engineering 23
1.5 Evolution of Food Engineering 24
1.6 Evolution in Food Engineering Research 27
1.6.1 Kinetic Models 27
1.6.2 Transport Phenomenon 28
1.6.3 Process Design 28
1.7 Contributions of Food Engineering Research 29
1.7.1 Safe and Wholesome Foods 29
1.7.2 Affordable Food Supply 29
1.7.3 Convenient Food Products 30
1.7.4 Product Quality Improvements 32
1.7.5 Innovative Food Products 33
1.8 The Future of Food Engineering 34
1.9 Summary 35
References 35
Chapter 2: Advances in 3D Numerical Simulation of Viscous and Viscoelastic Mixing Flows 37
2.1 Introduction 37
2.2 Theoretical Measures of Mixing 38
2.3 Governing Equations for Calculation of Flow 40
2.4 Numerical Methods for Simulation of Mixing Flows 41
2.5 3D Numerical Simulation of Model Mixing Geometries 44
2.5.1 Stirred Tank Reactors/Batch Mixers 44
2.5.2 Dough Mixers and Kneaders 48
2.5.3 Continuous Mixers and Extruders 51
2.6 Conclusions 60
References 60
Chapter 3: CFD: An Innovative and Effective Design Tool for the Food Industry 63
3.1 Introduction 63
3.2 Modeling Food Processes: Solving Governing Partial Differential Equations 64
3.2.1 Conservation of Mass 66
3.2.2 Conservation of Momentum 66
3.2.3 Conservation of Energy 67
3.3 Modeling Properties of Fluids 68
3.3.1 Density 68
3.3.2 Viscosity 69
3.4 Modeling Particular Flow Regimes 69
3.4.1 Turbulent Flows 69
3.4.1.1 Large Eddy Simulations 70
3.4.1.2 Reynolds Averaged Navier-Stokes 70
Reynolds Stress Models 70
Turbulent Viscosity Models 71
The Standard k-epsi Model 71
The RNG k-epsi Model 71
The Realizable k-epsi Model 72
The k-omega Model 72
3.4.2 Flows Containing Different Phases 72
3.4.2.1 Volume of Fluid Model 73
3.4.2.2 Eulerian-Eulerian Model 73
3.4.2.3 Lagrangian-Eulerian Model 74
3.4.3 Modeling Flows through Porous Media 74
3.5 Numerical Methods Used by CFD Code Developers 75
3.6 Applications of CFD in Food Industry 76
3.6.1 Sterilization 76
3.6.1.1 Canned Foods 76
3.6.1.2 Pouched Foods 77
3.6.2 Pasteurization 77
3.6.3 Aseptic Processing 78
3.6.3.1 Plate Heat Exchangers for Milk Processing 78
3.6.3.2 Plate Heat Exchangers for Yoghurt Processing 78
3.6.4 Drying 78
3.6.4.1 Fluidized Beds 78
3.6.4.2 Spray Drying 79
3.6.4.3 Forced Convection Drying 79
3.6.5 Cooking 80
3.6.5.1 Natural Convection Ovens 80
3.6.5.2 Forced Convection Ovens 80
3.6.5.3 Baking Ovens 81
3.7 Challenges in Use of CFD in the Food Industry 81
3.7.1 Improving the Efficiency of the Solution Process 81
3.7.2 CFD to Control Food Processes 81
3.7.3 Turbulence 82
3.7.4 Need for Sensitivity Analysis 82
3.8 Conclusions 82
3.9 Nomenclature 83
3.9.1 Greek Letters 83
3.9.2 Subscripts 84
References 84
Chapter 4: Incorporation of Fibers in Foods: A Food Engineering Challenge 87
4.1 Introduction 87
4.1.1 Dietary Fiber 88
4.1.2 Importance of Dietary Fiber 88
4.1.3 Sources of Fiber 88
4.1.4 Fortification of Foods with Fiber 89
4.2 Processing and Chemical Evaluation of Fiber-Enriched Foods and Corn Fibers 89
4.2.1 Extrusion Processing 89
4.2.2 Challenges in Corn Fiber Processing 91
4.2.3 Chemistry of Corn Fiber 91
4.2.4 Strategies for Modification of Corn Fiber 94
4.2.4.1 Chemical Modification 94
4.2.4.2 Physical Modification 94
4.2.4.3 Enzymatic Modification 94
4.3 Techniques to Assess Fiber Chemistry and Fiber-Enriched Foods 95
4.3.1 Rheological Characterization 95
4.3.1.1 Solution Rheology 95
4.3.1.2 Capillary Rheometry 95
4.3.1.3 Lubricated Squeezing Flow 96
4.3.2 Structural Characterization 97
4.3.2.1 Chemical Analysis 97
Monosaccharide Analysis 98
Protein Estimation 98
Phenolic Acid Analysis 98
Lipid Analysis 99
4.3.2.2 Spectroscopy Techniques 99
4.3.2.3 Thermal Analysis 99
4.3.2.4 High-Pressure Size Exclusion Chromatography Techniques 100
4.3.2.5 Light Scattering 100
HPSEC-MALS 100
Conformation Plots and Branching Analysis 101
4.3.2.6 Fermentation Profiling 101
4.4 Structure and Functionality of Alkali-Treated Corn Arabinoxylans 102
4.4.1 Description of Chemical Treatment 102
4.4.2 Rheological Properties and Extrusion Expansion of Modified Fibers Mixed with Cornmeal 102
4.4.2.1 Extrusion Trials 102
4.4.2.2 Capillary Rheometry 103
4.4.2.3 Extensional Rheology 104
4.4.2.4 Effect of Rheology on the Expansion Process 105
4.4.2.5 Possible Effects of Structure and Composition of Fibers on Rheology 106
4.4.3 Effect of Branching on Rheology of Alkali-Soluble Corn Arabinoxylans 107
4.4.3.1 Melt Shear Rheology Using Capillary Rheometry 108
4.4.3.2 Extensional Rheology Using Lubricated Squeezing Flow 109
4.4.3.3 Solution Shear Rheology Using Rotational Rheometer 110
4.4.3.4 Branching Analysis Using HPSEC-MALS 110
4.4.3.5 Possible Implications in Extrusion 111
4.5 Conclusion 112
References 112
Chapter 5: Gastric Digestion of Foods: Mathematical Modeling of Flow Field in a Human Stomach 117
5.1 Introduction 117
5.2 Fluid Flow in a Human Stomach 117
5.3 Procedures in Modeling 120
5.3.1 Stomach Geometry 120
5.3.2 Deformation of Stomach Using Dynamic Meshing 121
5.4 Results and Discussions 123
5.4.1 Validation of a Modeled Flow Field inside a Circular Tube 123
5.4.2 Pressure Validation 124
5.4.3 Flow Field Inside the Stomach 125
5.4.4 The Effect of Viscosity of Gastric Fluid 127
5.4.5 The Effect of Density of Gastric Fluid 129
5.4.6 The Effect of ACW Speed 129
5.4.7 The Effect of Depth of Contraction 131
5.5 Conclusions 133
5.6 Suggestions for Future Work 133
References 134
Chapter 6: State of the Art in Immobilized/Encapsulated Cell Technology in Fermentation Processes 136
6.1 Introduction 136
6.2 Carrier Selection and Design 138
6.2.1 Immobilization on Solid Carrier Surfaces 138
6.2.2 Entrapment Within Porous Matrix 142
6.2.3 Cell Aggregation 144
6.2.4 Containment Behind a Membrane Barrier 144
6.3 Bioreactor Design 144
6.4 Impact of Immobilization on Flavor Formation 149
6.4.1 Influence of ICT on Higher Alcohol Production 149
6.4.2 Ester Production in ICT Systems 151
6.4.3 Carbonyl Compounds Production in ICT Systems 152
6.4.4 Secondary Fermentation Using ICT 154
6.4.5 Malolactic Fermentation in ICT Systems 155
6.5 Conclusion 156
References 156
Chapter 7: Multifactorial Assessment of Microbial Risks in Foods: Merging Engineering, Science, and Social Dimensions 164
7.1 Introduction and Context 164
7.2 Risk Management Frameworks for Food Safety 165
7.3 Multifactorial Risk Prioritization Framework 166
7.3.1 Defining Risk Factors 168
7.3.1.1 Public Health Assessment 168
7.3.1.2 Market-Level Assessment 169
7.3.1.3 Consumer Assessment 170
7.3.1.4 Social Factor Assessment 173
7.3.2 Information Cards 173
7.3.3 Multifactorial Risk Prioritization 175
7.4 Food Engineering at Risk Management/Risk Assessment Interface: Challenges and Implications for Training 178
7.5 Concluding Statements 180
References 180
Chapter 8: Development of Eco-efficiency Indicators to Assess the Environmental Performance of the Canadian Food and Beverage Industry 182
8.1 Introduction 182
8.2 Overview of the Canadian FBI 182
8.3 Energy Consumption and Greenhouse Gas Emissions 185
8.3.1 The Indicators: Energy Consumption Intensity and Greenhouse Gas Emission Intensity 188
8.3.2 Results and Interpretation: ECI and GHGEI 192
8.3.2.1 National Results and Interpretation: ECI and GHGEI 193
ECI, Sectoral Features Regardless of Size of Establishments 193
ECI, Sectoral Features with Regard to Establishment Size 195
ECI, Sub-sectoral Features Regardless of the Size of Establishments 196
Greenhouse Gas Emission Intensity 196
8.3.2.2 Provincial Results and Interpretation: ECI and GHGEI 199
Energy Consumption Intensity 200
Greenhouse Gas Emission Intensity 202
Limitations: ECI and GHGEI 204
8.3.3 Response Options: ECI and GHGEI 204
8.4 Water Intake and Water Discharge 205
8.4.1 The Indicators: Water Intake Intensity and Water Discharge Intensity 207
8.4.2 Results and Interpretation: WII and WDI 210
8.4.2.1 National Results and Interpretation: WII and WDI 210
8.4.2.2 Provincial Results and Interpretation: WII and WDI 213
8.4.3 Response Options: WII and WDI 215
8.5 Packaging Use 216
8.5.1 The Indicator: PUI 220
8.5.2 Results and Interpretation: PUI 221
8.5.2.1 National Results and Interpretation: PUI 221
8.5.2.2 Provincial Results and Interpretation 224
8.5.3 Limitations: PUI 227
8.5.4 Response Options: PUI 227
8.6 Conclusions and Recommendations 228
References 231
Chapter 9: Food Process Economics 236
9.1 Importance of Economics in Food Processing 236
9.2 Process Engineering Economics 237
9.2.1 Capital Cost 237
9.2.2 Operating Cost 237
9.2.2.1 Raw Food Materials and Packaging Materials 237
9.2.2.2 Labor 238
9.2.2.3 Utilities 239
9.2.3 Process Profitability 239
9.2.3.1 Capital Cost 239
9.2.3.2 Manufacturing Cost 242
9.2.3.3 Discounted Cash Flow 242
9.2.3.4 Measures of Plant Profitability 243
9.3 Food Processing Plants 244
9.3.1 Food Preservation Plants 244
9.3.2 Food Manufacturing Plants 247
9.3.3 Food Ingredients Plants 252
9.4 Conclusions 252
References 253
Chapter 10: Systemic Approach to Curriculum Design and Development 254
10.1 Introduction 254
10.2 Systems Theory and Thinking 255
10.2.1 Designing Curriculum Using Systems Thinking 256
10.2.2 Designing Curriculum for Undergraduate Courses 257
10.2.3 Designing Curriculum for a Master´s Degree Program 258
10.2.4 Designing Curriculum for a Doctoral Program 259
10.3 Conclusion 259
References 260
Part II: Advances in Food Process Engineering 261
Chapter 11: Innovations in Thermal Treatment of Food 262
11.1 Introduction 262
11.2 Microbial Kinetics for Process Calculations 263
11.3 Retort Equipment Systems in Cookroom Operations 266
11.4 Flexible Retortable Packages 268
11.5 Market Implications 271
References 273
Chapter 12: Optimization of Food Thermal Processing: Sterilization Stage and Plant Production Scheduling 275
12.1 Introduction 275
12.1.1 Thermal Process Calculation 276
12.1.2 Optimal Scheduling for Food Canneries 277
12.2 Methodology 278
12.2.1 Sterilization Stage Optimization 278
12.2.1.1 Penalty Functions 279
12.2.1.2 Process Optimization and Computer Simulation 279
12.2.1.3 Adaptive Random Search Method 280
12.2.2 Canning Plant Scheduling 284
12.2.2.1 Problem Definition 287
12.2.2.2 Mathematical Model Description 287
12.3 Results and Discussion 289
12.3.1 Thermal Process Calculation 289
12.3.1.1 Maximizing Quality Retention Problem 289
12.3.1.2 Minimization Process Time Problem 289
12.3.1.3 Canning Plant Optimization 291
12.4 Conclusions 295
References 296
Chapter 13: Recent Advances in Emerging Nonthermal Technologies 299
13.1 Introduction 299
13.1.1 Consumer Trends 300
13.2 Emerging Technologies 301
13.2.1 Nonthermal Technologies 301
13.3 High Hydrostatic Pressure 304
13.3.1 Effects on Microorganisms, Enzymes and Food Components 304
13.3.2 Advances in High Pressure Processing 308
13.3.3 Pressure Assisted Thermal Sterilization (PATS) 309
13.3.4 Future of High Hydrostatic Pressure 311
13.4 Pulsed Electric Fields 311
13.4.1 Effects on Microorganisms, Enzymes and Food Components 312
13.4.2 Recent Advances in PEF Processing 313
13.4.3 PEF Extraction 314
13.4.4 Future of Pulsed Electric Fields 315
13.5 Ultrasound 316
13.5.1 Extraction 316
13.5.2 Recent Advances in Ultrasound 317
13.6 Cold Plasma 318
13.6.1 Processing Conditions 319
13.6.2 Effect on Microorganisms 320
13.7 Dense Phase Carbon Dioxide 320
13.8 Other Novel Nonthermal Technologies for Food Processing 322
13.8.1 Future of Other Novel Technologies 323
13.9 Modeling of Microbial Inactivation in Nonthermal Technologies 324
13.10 Final Remarks 331
References 332
Chapter 14: High-Pressure-Induced Effects on Bacterial Spores, Vegetative Microorganisms, and Enzymes 338
14.1 Introduction 338
14.2 High Pressure Thermal Sterilization 339
14.2.1 Development and Application of Temperature Controlled Spore Inactivation 340
14.2.2 Industrial Relevance and Applications 344
14.3 HP Effects on Vegetative Microorganisms and Enzymes 346
14.4 Outlook, Needs, and Challenges 349
References 350
Chapter 15: High Pressure Sterilization of Foods 354
15.1 Introduction 354
15.2 High Pressure Pasteurization 355
15.3 High Pressure Sterilization 356
15.4 Compression Heating 358
15.5 Spore Inactivation Studies 359
15.5.1 Clostridum botulinum Studies 361
References 362
Chapter 16: Bioseparation of Nutraceuticals Using Supercritical Carbon Dioxide 365
16.1 Introduction 365
16.2 Fundamentals 366
16.2.1 Physical and Transport Properties 367
16.2.2 Solubility Behavior 371
16.2.2.1 Factors Affecting Solubility in Supercritical Fluids 371
16.2.2.2 Solubility Determination and Correlation 373
16.3 Separation Processes 377
16.3.1 Extraction 377
16.3.1.1 Lipid-Based Nutraceuticals 379
16.3.1.2 Phytochemicals 385
16.3.2 Fractionation 386
16.3.2.1 Lipid-Based Nutraceuticals 387
16.3.2.2 Phytochemicals 393
16.4 Commercialization and Future Outlook 394
References 396
Chapter 17: Mass Transfer and Equilibrium Parameters on High-Pressure CO2 Extraction of Plant Essential Oils 405
17.1 Introduction 405
17.1.1 Chemistry and Localization of Essential Oils 406
17.1.2 Organization of Chapter 408
17.2 Mass Transfer Models 410
17.2.1 Diffusion Model 410
17.2.2 Limitations of the Diffusion Model 417
17.2.3 Alternative Internal Mass Transfer Mechanisms 418
17.3 Kinetic Parameters of CO2 Extraction of Essential Oils 423
17.3.1 Axial Dispersion Coefficient 426
17.3.2 External Mass Transfer Coefficient 436
17.3.3 Effective Diffusivity in the Solid Matrix 440
17.4 Phase Equilibrium Effects in Essential Oil Extraction, Fractionation, and Recovery 451
17.4.1 Solubility in CO2 of Essential Oil Components in Model (Binary) Systems 451
17.4.2 Essential Oil Fractionation in Model (Ternary) Systems and Complex Mixtures 460
17.4.3 Thermodynamic and Operational Solubility in the CO2 Extraction of Essential Oils 463
17.4.4 Operational Solubility and Sorption Phenomena in the CO2 Extraction of Essential Oils 465
17.5 Concluding Remarks 472
References 474
Part III: Water Management in Food 483
Chapter 18: Glass Transitions: Opportunities and Challenges 484
18.1 Introduction 484
18.1.1 Confectionary 485
18.1.2 Frozen Foods 485
18.1.3 Cereal Foods 486
18.1.4 Food Powders and Dehydrated Foods 487
18.2 Glass Transition: Opportunities 488
18.2.1 Freezing and Freeze-Drying 488
18.2.2 Spray Drying 490
18.2.3 Extrusion 492
18.2.4 Encapsulation 492
18.3 Glass Transition: Challenges 493
18.4 Conclusion 498
References 498
Chapter 19: Caking of Water-Soluble Amorphous and Crystalline Food Powders 502
19.1 Introduction 502
19.2 Scientific Background 503
19.2.1 Supra-molecular Structure and Material Properties 503
19.2.2 Adhesion Mechanisms 504
19.2.3 Caking Processes 508
19.2.4 Powder Flowability and Stress States 509
19.3 Materials and Methods 512
19.3.1 Materials 512
19.3.2 Method for Measuring Caking 513
19.4 Results and Discussion 514
19.4.1 Caking of Amorphous Water-Soluble Powders 514
19.4.2 Caking of Crystalline Powders 519
19.4.3 Caking of Powder Mixes 519
19.4.4 Influence of Re-crystallization of Amorphous Substances on Caking 523
19.5 Summary and Conclusions 524
References 525
Chapter 20: Effective Drying Zones and Nonlinear Dynamics in a Laboratory Spray Dryer 526
20.1 Introduction 526
20.2 Materials and Methods 528
20.2.1 Testing Material 528
20.2.2 Spray Dryer 528
20.2.3 Moisture Content and Sampling of Material 529
20.2.4 Evaluation of Air and Product Temperature 530
20.2.5 Mean Particle Diameter During Drying 530
20.2.6 Measurement of the Mass Flow Rate 530
20.2.7 Effective Drying Height 530
20.2.8 Computational Fluid Dynamics Simulation 533
20.2.9 Simulation of Airflow Profiles 533
20.2.10 Nonlinear Dynamics of the System 533
20.3 Results and Discussion 534
20.4 Conclusions 539
20.5 Symbols 543
20.5.1 Greek Letters 543
20.5.2 Subscripts 544
References 544
Chapter 21: Rehydration Modeling of Food Particulates Utilizing Principles of Water Transport in Porous Media 546
21.1 Introduction 546
21.2 Mathematical Modeling 547
21.2.1 Empirical and Semiempirical Models 547
21.2.2 The Diffusion Model 547
21.3 Paradigm Shift: Capillary Flow in Porous Media 548
21.4 Flow in Unsaturated Porous Media 549
21.4.1 Capillarity and Tension Head 549
21.4.2 Water Retention Curve 550
21.4.3 Richards Equation, Boundary, and Initial Conditions 552
21.4.4 Developing the Theory of Flow in Porous Media 553
21.4.5 Rehydration of Foods Using Porous Media: Additional Considerations 558
21.5 New Approaches and Other Advances 559
21.6 Research Needs 560
21.7 Conclusions 560
References 561
Chapter 22: Responses of Living Organisms to Freezing and Drying: Potential Applications in Food Technology 564
22.1 Introduction 564
22.2 Desiccation Strategies: Glass Formation and Solute-Protecting Interactions in Anhydrobiotes 565
22.3 Survival in Frozen Environments: Managing the Kinetics of Ice Nucleation or Ice Crystal Growth 566
22.4 Some Theoretical Considerations 567
22.5 Involved Mechanisms 572
22.5.1 Avoidance of Solids Crystallization in Supercooled State 572
22.5.2 Increase of Extracellular Ice Nucleation Rate: INAs 573
22.5.3 Inhibition of Ice Crystal Growth: AFP 574
22.5.4 Vitrification at High Water Content (Liquid N and/ or with Concentrated Solutes) 575
22.5.5 The Problem of Recalcitrant Seeds 576
22.6 Applications in Food Technology 577
22.7 Future Prospects 579
References 581
Part IV: Food Microstructure 585
Chapter 23: Food Microstructures for Health, Well-being, and Pleasure 586
23.1 Introduction 586
23.2 Foods Are Unique Materials 587
23.3 Food Structure Matters 587
23.4 Nature Is the Ultimate Provider of Food Structures 588
23.5 Atomic Doping by Nature and the Color of Some Foods 590
23.6 The Cow´s Udder: A Fantastic Microfluidic Device 590
23.7 The Kinetics of Structure Formation: The Case of Whipped Cream 591
23.8 Hierarchical Arrangements in Fats 592
23.9 Microstructures for Health 593
23.10 Microstructures for Pleasure 595
23.11 Conclusions 595
References 596
Chapter 24: Fruit Microstructure Evaluation Using Synchrotron X-Ray Computed Tomography 598
24.1 Fruit Quality and Microstructure 598
24.2 X-Ray Computed Tomography 600
24.3 Synchrotron X-Ray CT of Fruit Tissue 601
24.4 3-D Imaging of Fruit Microstructure 601
24.4.1 Fruit and Methods 601
24.4.2 Microstructure of Apple and Pear Fruit 603
24.4.3 Multiscale Modeling 603
24.5 Conclusions 606
References 606
Chapter 25: Multifractal Characterization of Apple Pore and Ham Fat-Connective Tissue Size Distributions Using Image Analysis 608
25.1 Application of Fractal and Multifractal Analysis to Biological Material 608
25.2 Theory of MFA 609
25.3 Multifractal Characterization of PSD in Fresh and Frozen-Thawed Apple Tissue 612
25.3.1 Experimental Procedure for Apple Tissue 613
25.3.2 Extracted Features and Multifractal Spectrum Computation 615
25.3.3 Results of MFA for PSD in Apples 617
25.4 Multifractal Characterization of FSD for Two Qualities of Presliced Pork Hams 619
25.4.1 Experimental Procedure for Ham Samples 620
25.4.2 Results of MFA for FSD in Hams 621
25.5 Conclusions and Outlook 622
References 623
Part V: Food Packaging 626
Chapter 26: New Packaging Materials Based on Renewable Resources: Properties, Applications, and Prospects 627
26.1 Introduction 627
26.2 Bio-plastics: Where Are We Now? 628
26.3 Applications of Bio-plastics 632
26.4 Original Properties and Active Materials for Food Packaging 633
26.5 Conclusions 636
References 637
Chapter 27: Edible Coatings to Improve Food Quality and Safety 639
27.1 Introduction 639
27.2 Edible Coating Materials 640
27.3 Application and Distribution of Edible Coatings on the Food Surface 642
27.4 Edible Coating Characteristics as Related to Polymer Structure and Physico-chemical Properties 643
27.5 Barrier Properties 645
27.5.1 Water Vapor Permeability 645
27.5.2 Gas Permeabilities 646
27.6 Composite Film Formation 647
27.7 Examples of Coating Applications 648
27.8 Incorporating Functional Ingredients into Edible Films and Coatings 649
27.8.1 Antioxidant Edible Coatings 650
27.8.2 Antimicrobial Edible Films 650
27.8.3 Edible Coatings as Carriers of Nutraceutical Ingredients 653
27.9 Edible Coatings to Improve Quality and Extend Shelf Life of Foods - Case Studies 654
27.9.1 Edible Coatings Acting as Oil Barriers in Fried Products 654
27.9.2 Starch-Based Edible Coatings to Prolong Storage Life of Refrigerated Highly Perishable Fruits 657
27.10 Final Remarks 662
References 663
Chapter 28: Physical Properties of Edible Gelatin Films Colored with Chlorophyllide 668
28.1 Introduction 668
28.2 Gelatin and Edible Films 669
28.3 Chlorophylls 670
28.4 Experimental Considerations 672
28.5 Physical Properties of Gelatin-Based Films Colored with Chlorophyllide 673
28.6 UV and Light Barrier Properties of Gelatin-Based Films Colored with Chlorophyllide 675
28.7 Color Characteristics of Gelatin-Based Films Colored with Chlorophyllide 676
28.8 Conclusion 682
References 682
Index 686

Erscheint lt. Verlag 25.12.2010
Reihe/Serie Food Engineering Series
Food Engineering Series
Zusatzinfo XVIII, 694 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Lebensmitteltechnologie
Wirtschaft
Schlagworte biochemical engineering • food engieering • Food Quality • Food Safety • food science
ISBN-10 1-4419-7475-X / 144197475X
ISBN-13 978-1-4419-7475-4 / 9781441974754
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Wolfgang Grellmann; Sabine Seidler

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
CHF 126,95