Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Sustainable Biotechnology (eBook)

Sources of Renewable Energy

Om V. Singh, Steven P. Harvey (Herausgeber)

eBook Download: PDF
2009 | 2010
XVII, 323 Seiten
Springer Netherland (Verlag)
978-90-481-3295-9 (ISBN)

Lese- und Medienproben

Sustainable Biotechnology -
Systemvoraussetzungen
213,99 inkl. MwSt
(CHF 208,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Sustainable Biotechnology; Sources of Renewable Energy draws on the vast body of knowledge about renewable resources for biofuel research, with the aim to bridge the technology gap and focus on critical aspects of lignocellulosic biomolecules and the respective mechanisms regulating their bioconversion to liquid fuels and other value-added products. This book is a collection of outstanding research reports and reviews elucidating several broad-ranging areas of progress and challenges in the utilization of sustainable resources of renewable energy, especially in biofuels.


Sustainable Biotechnology; Sources of Renewable Energy draws on the vast body of knowledge about renewable resources for biofuel research, with the aim to bridge the technology gap and focus on critical aspects of lignocellulosic biomolecules and the respective mechanisms regulating their bioconversion to liquid fuels and other value-added products. This book is a collection of outstanding research reports and reviews elucidating several broad-ranging areas of progress and challenges in the utilization of sustainable resources of renewable energy, especially in biofuels.

Contents 6
Contributors 8
Applications of Biotechnology for the Utilization of Renewable Energy Resources 12
Introduction 12
References 16
Heat and Mass Transport in Processing of Lignocellulosic Biomass for Fuels and Chemicals 17
1 Introduction 17
2 Macroscopic Transport Through Plant Tissues 20
3 Microscopic Transport Through Plant Cell Walls 22
4 Lignin Mobility and Impact on Biochemical Conversion 23
5 Rheology of Biomass Slurries and Implications for Mixing 28
6 Outlook for Challenges Associated with Transport Processes in Biochemical Conversion of Lignocellulosic Biomass 29
References 31
Biofuels from Lignocellulosic Biomass 35
1 Introduction 35
2 Background Research 37
2.1 Natural Resource Limitation and Economic Security 37
2.2 Limitation of Mainstream Agricultural Crops for Biofuels 38
3 Potential of Lignocellulosic Biomass 39
4 Technical Issues at Present 40
5 Technical Details 42
5.1 Gasification of Lignocellulosic Biomass 42
5.1.1 Overview 42
5.1.2 Gasification Process 42
5.2 Syngas Generation 42
5.3 Liquid Fuels -- FT Liquids (Diesel), Ethanol or Butanol, Chemicals 44
6 Biochemical Conversion of Lignocellulosic Biomass 46
6.1 Overview 46
6.2 Pretreatment Methods 47
6.3 Cellulose Hydrolysis 48
6.4 Fermentation (Including SSF and C5 and C6) 50
6.5 Butanol and Other Chemicals 51
6.6 Heat (Lignin) 51
7 Current Outcome of Technological Implementation 51
7.1 Current Technology and Commercialization 51
7.2 Major Industries and Technology Providers 52
8 Summary 53
References 54
Environmentally Sustainable Biofuels The Case for Biodiesel, Biobutanol and Cellulosic Ethanol 58
1 Introduction 58
2 Biodiesel 60
2.1 Background 60
2.2 Feedstock 61
2.3 Comparison of Technologies 65
2.4 Summary 66
3 Biobutanol 66
3.1 Background 66
3.2 Comparison of Processes 67
3.3 Summary 69
4 Cellulosic Ethanol 69
4.1 Background 70
4.2 Comparison of Pretreatment and Manufacturing Processes 71
4.3 Summary 73
5 Final Thoughts 74
References 74
Biotechnological Applications of Hemicellulosic Derived Sugars: State-of-the-Art 78
1 Introduction 78
2 Background Research 80
3 Technical Details Materials and Methods 81
3.1 Hemicellulose Hydrolysis 81
3.1.1 Dilute Acidic Hydrolysis 81
3.1.2 Enzymatic Hydrolysis 83
3.2 Hemicellulose Hydrolysates into Products of Industrial Significance 83
3.2.1 Ethanol 83
3.2.2 Xylitol 89
3.3 2, 3-Butanediol 91
3.3.1 Microorganisms 91
3.3.2 Fermentation Methodologies 91
3.4 Other Products 92
4 Expert Commentary and Five-Year View 92
References 93
Tactical Garbage to Energy Refinery (TGER) 97
1 Introduction 98
2 Background Research 100
3 Materials and Methods 101
3.1 TGER Retrofits 102
3.2 Modifications of Second Prototype 104
4 Current Outcome of Technical Implementation 106
4.1 General TGER Parameters 108
4.1.1 Consumables: 108
4.1.2 Logistical Overhead: 108
4.1.3 Safety and health risk: 108
4.1.4 Target MTBEFF: 108
4.2 Sub-system Specific Parameters Under Optimal Conditions Conus 109
5 Expert Commentary and Five Year View 113
6 Conclusion 115
References 117
Production of Methane Biogas as Fuel Through Anaerobic Digestion 118
1 Introduction 119
2 The Microbiology Underpinning Anaerobic Digestion 120
3 Methane Biogas Production from Different Feedstocks 123
3.1 Anaerobic Digestion of Municipal Sludge (Biosolids) 123
3.2 Anaerobic Digestion of Animal Manures 124
3.2.1 Animal Manure Dung and Poultry Litter 125
3.2.2 Dairy and Swine Manure Slurry 126
3.3 Anaerobic Digestion of Solid Food and Food-Processing Wastes, Organic Fraction of Municipal Solid Wastes (OFMSW), and Crop Residues 127
3.4 Anaerobic Treatment of Organic Wastewaters 129
4 Drivers and Barriers for Commercial Implementation of Anaerobic Digestion to Convert Biomass Wastes to Renewable Energy 130
4.1 Drivers for Commercial Implementation of AD 131
4.2 Barriers to Commercial Implementation of AD 132
4.3 Tipping the Balance Between Drivers and Barriers 133
5 Future Perspective 133
5.1 Enhancing Biomass Conversion and Methane Production 133
5.2 Optimizing AD Process Stability 134
5.3 Better Knowledge on the Microbial Communities in Digesters 135
5.4 Strengthening the Drivers and Eliminating the Barriers 135
References 136
Waste to Renewable Energy: A Sustainable and Green Approach Towards Production of Biohydrogen by Acidogenic Fermentation 141
1 Introduction 141
2 Fermentative Process of H2 Production 142
2.1 Biochemistry 144
2.2 Soluble Metabolic Acid Intermediates 145
3 Waste and Wastewater as Substrates for H2 Production 145
4 Factors Influencing the Fermentative H2 Production Process 148
4.1 Biocatalyst 148
4.2 pH 149
4.3 Hydraulic Retention Time (HRT) 152
4.4 Temperature 153
4.5 Reactor Configuration and Operation 153
4.6 Substrate Loading Rate 154
4.7 Nitrogen and Phosphrous 156
5 Combined Process Efficiency 156
6 Limitations in Fermentative H2 Production 157
7 Strategies to Enhance Process Efficiency 158
7.1 Process Integration Approach 158
7.2 Microbial Electrolysis 159
7.3 Polyhydroxyalkanoate (PHA) Generation Utilizing Acid-Rich Effluents 161
7.4 Bioaugmentation 161
7.5 Self-immobilization of Biocatalyst 161
7.6 Activators to Enhance H2 Production 162
7.7 Molecular Engineering 164
8 Microbial Fuel Cell (MFC) Bioelectricity Generation from Acidogenic Fermentation 164
9 Concluding Remarks 165
References 168
Bacterial Communities in Various Conditions of the Composting Reactor Revealed by 16S rDNA Clone Analysis and DGGE 177
1 Introduction 177
2 Background Research 178
2.1 16S rRNA Gene (rDNA) Clone Analysis 178
2.2 Denaturing Gradient Gel Electrophoresis (DGGE) 179
2.3 Case Study 179
2.3.1 Different Conditions of the Reactor 179
2.3.2 Types of Bulking Agent -- Wood Chips or Polyethylene Terephthalate 179
2.3.3 Small-Scale and Large-Scale Reactor 180
3 Technical Details-Materials and Methods 180
3.1 Operation of the Reactors 180
3.2 Extraction of Community DNA from Samples 181
3.2.1 16S rDNA Clone Analysis 181
3.2.2 Denaturing Gradient Gel Electrophoresis (DGGE) 182
4 Current Outcome of Technological Implementation 183
5 Expert Commentary and 5 Year View 186
References 187
Perspectives on Bioenergy and Biofuels 190
1 Introduction 190
1.1 Biomass for Non-food Applications and Possible Adverse Effects 191
1.2 Food Production and Price Increases 191
1.3 Destruction of the Rainforest 192
1.4 Greenhouse Gases 192
1.5 Waste Biomass and Its Application for Energy and Fuels 193
1.6 Biomass to Liquids (BTL) 193
1.7 Biogas 193
1.8 Second Generation Bioethanol Production 194
1.9 Lignocellulose Pre-treatment for Bioethanol Production 195
1.10 (Ligno)Cellulose Hydrolysis 196
1.11 Fermentation of Sugars 196
2 Technical Details and Status of Technological Implementation 196
2.1 Q: Burn or Bioethanol? 197
2.2 Pretreatment 198
2.3 Pretreatment Experiments 198
2.4 Pretreatment Costs and Acid Recovery 198
2.5 Enzymatic Hydrolysis 199
2.6 Adding Value to Rest Streams 199
3 Commentary on Future Perspectives 200
3.1 Tackling Adverse Effects of the Use of Biomass for Non-food Applications 200
3.2 Use of the Correct Raw Materials and Technology at the Right Scale 202
4 Conclusion 202
References 203
Perspectives on Chemicals from Renewable Resources 206
1 Introduction 206
1.1 Conversions of Fats and Oils 207
1.2 Carbohydrate Conversions 207
2 Conversions of Lignin 209
2.1 Amino Acid Conversions 209
2.2 Other Biomass Conversions 209
3 An Approach 210
4 Technical Details and Status of Technological Implementation 212
4.1 Possible Reactions of Amino Acids 214
5 Expert Commentary on Future Perspectives 215
5.1 Sourcing of Raw Materials 216
5.2 Protein Conversion to Amino Acids 217
5.3 Amino Acid Separation 217
5.4 Amino Acid Application and Modification 218
References 219
Microbial Lactic Acid Production from Renewable Resources 222
1 Introduction 222
2 Background Research 224
3 Materials and Methods 226
3.1 Pretreatment 226
3.2 Enzymatic Hydrolysis and Fermentation 227
3.3 Separation 228
4 Results and Discussion 229
4.1 Cheese Whey 231
4.2 Starchy Biomass 232
4.3 Lignocellulosic Biomass 233
5 Expert Commentary and 5 Year View 234
References 235
Microbial Production of Potent Phenolic-Antioxidants Through Solid State Fermentation 240
1 Introduction 240
2 Background Research 241
2.1 Nordihydroguaiaretic Acid (NDGA) 241
2.2 Gallic Acid 245
2.3 Ellagic Acid 246
3 Technical Details 247
4 Current Outcome of Technological Implementation 248
5 Current Commentary and 5 Year View 250
References 251
Photoautotrophic Production of Astaxanthin by the Microalga Haematococcus pluvialis 258
1 Introduction 258
2 Current Methodology for the Production of Haematococcus astaxanthin: The Two-Stage Approach 260
3 The Alternative: The One-Step Strategy 262
References 267
Enzymatic Synthesis of Heparin 270
1 Introduction 270
2 Background Research 271
2.1 Structures and Biological Functions of HS 271
2.2 Biosynthesis of HS 272
2.3 The Role of HS/Heparin in Regulating the Blood Coagulation 274
2.4 Chemical Synthesis of Heparin/HS 275
2.5 Enzymatic Synthesis of Heparin/HS 275
3 Technical Details-Materials and Methods 275
3.1 Purification of Heparosan from E. coli 276
3.2 Expression of HS Biosynthetic Enzymes in E. coli 277
3.3 Coupling HS Sulfotransferase with a PAPS Regeneration System 277
4 Current Outcome of Technological Implementation 278
4.1 Enzymatic Synthesis of AT Binding Pentasaccharide 278
4.2 Chemoenzymatic Synthesis of Anticoagulant HS from Heparosan 278
4.3 Enzymatic Redesign of HS 280
4.4 Use of an Enzymatic Combinatorial Approach to Identify Novel Anticoagulant HS Structures 281
4.5 Preparation of 3-O-Sulfated Octasaccharide that Inhibits the Entry of HSV-1 281
4.6 De Novo Synthesis of Heparin/HS Backbone 283
4.7 Alternative UDP Sugar Donor Substrates 284
5 Expert Commentary and 5 Year View 285
References 285
Extremophiles: Sustainable Resource of NaturalCompounds-Extremolytes 289
1 Introduction 289
2 Extremophilism 290
2.1 Factors Influencing Extremophilism 292
2.1.1 Temperature 292
2.1.2 Radiation 293
2.1.3 Desiccation 294
2.1.4 Pressure 294
2.1.5 Salinity 295
2.1.6 pH 295
3 Extremophiles and Extremolytic Products 295
4 Future Implications of Extremolytes 298
5 Expert Commentary and 5 Year View 298
References 299
Index 305

Erscheint lt. Verlag 25.11.2009
Zusatzinfo XVII, 323 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Naturwissenschaften Biologie Mikrobiologie / Immunologie
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
Wirtschaft
Schlagworte Biobutanol • biodiesel • bioenergy • biofuel • Biofuels • Biogas • Biotechnology • Fermentation • Microbiology • Transport
ISBN-10 90-481-3295-9 / 9048132959
ISBN-13 978-90-481-3295-9 / 9789048132959
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
CHF 68,35
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
CHF 68,35