Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Feature Extraction in Medical Image Retrieval (eBook)

A New Design of Wavelet Filter Banks
eBook Download: PDF
2024 | 2024
XV, 155 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-57279-1 (ISBN)

Lese- und Medienproben

Feature Extraction in Medical Image Retrieval - Aswini Kumar Samantaray, Amol D. Rahulkar
Systemvoraussetzungen
160,49 inkl. MwSt
(CHF 156,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Medical imaging is fundamental to modern healthcare, and its widespread use has resulted in creation of image databases. These repositories contain images from a diverse range of modalities, multidimensional as well as co-aligned multimodality images. These image collections offer opportunity for evidence-based diagnosis, teaching, and research. Advances in medical image analysis over last two decades shows there are now many algorithms and ideas available that allow to address medical image analysis tasks in commercial solutions with sufficient performance in terms of accuracy, reliability and speed. Content-based image retrieval (CBIR) is an image search technique that complements the conventional text-based retrieval of images by using visual features, such as color, texture, and shape, as search criteria. This book emphasizes the design of wavelet filter-banks as efficient and effective feature descriptors for medical image retrieval.

Firstly, a generalized novel design of a family of multiplier-free orthogonal wavelet filter-banks is presented. In this, the dyadic filter coefficients are obtained based on double-shifting orthogonality property with allowable deviation from original filter coefficients. Next, a low complex symmetric Daub-4 orthogonal wavelet filter-bank is presented. This is achieved by slightly altering the perfect reconstruction condition to make designed filter-bank symmetric and to obtain dyadic filter coefficients. In third contribution, the first dyadic Gabor wavelet filter-bank is presented based on slight alteration in orientation parameter without disturbing remaining Gabor wavelet parameters. In addition, a novel feature descriptor based on the design of adaptive Gabor wavelet filter-bank is presented. The use of Maximum likelihood estimation is suggested to measure the similarity between the feature vectors of heterogeneous medical images. The performance of the suggested methods is evaluated on three different publicly available databases namely NEMA, OASIS and EXACT09. The performance in terms of average retrieval precision, average retrieval recall and computational time are compared with well-known existing methods.


Dr. Aswini Kumar Samantaray received his B.Tech. and M.Tech. degree in electronics and communication engineering from Biju Patanaik University of Technology, Odisha, India in 2008 and 2012 respectively. He received his Ph.D. degree from National Institute of Technology Goa (NIT Goa), India in 2022. He worked as an Assistant Professor with the C. V. Raman College of Engineering from 2008 to 2018. He is currently working as an assistant professor with electronics and communication engineering, Vignan's Foundation for Science, Tecchnology and Research, Guntur, India. His research interests include the design of wavelets and filter-banks, image processing, and FPGA accelerators.

 

Dr. Amol D. Rahulkar received the B.E. degree in instrumentation engineering from the Shri Guru Gobind Singhji (SGGS) Institute of Engineering and Technology, Nanded, India, in 2000, the M.Tech. degree from the Indian Institute of Technology (IIT) Kharagpur, India, in 2002, and the Ph.D. degree from the SGGS Institute of Engineering and Technology, Nanded, affiliated to Swami Ramanand Teerth Marathwada University Nanded, India, in 2013. He is currently working as an Associate Professor with the Department of Electrical and Electronics Engineering, National Institute of Technology Goa (NIT Goa), India. His current research interests include the design of wavelets and filter-banks, digital signal processing, image processing, biometrics, FPGA accelerators, and soft-computing.

Erscheint lt. Verlag 15.5.2024
Zusatzinfo XV, 155 p. 55 illus., 10 illus. in color.
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Daubechies Wavelet • Dyadic Coefficients • feature extraction • Gabor wavelet • Image Retrieval • Orthogonal Wavelet • Perfect Reconstruction • rationalization • similarity measurement • Vanishing Moment
ISBN-10 3-031-57279-3 / 3031572793
ISBN-13 978-3-031-57279-1 / 9783031572791
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 65,45