Nicht aus der Schweiz? Besuchen Sie lehmanns.de

In-Memory Computing Hardware Accelerators for Data-Intensive Applications (eBook)

eBook Download: PDF
2023
VII, 143 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-34233-2 (ISBN)

Lese- und Medienproben

In-Memory Computing Hardware Accelerators for Data-Intensive Applications -
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book describes the state-of-the-art of technology and research on In-Memory Computing Hardware Accelerators for Data-Intensive Applications. The authors discuss how processing-centric computing has become insufficient to meet target requirements and how Memory-centric computing may be better suited for the needs of current applications. This reveals for readers how current and emerging memory technologies are causing a shift in the computing paradigm. The authors do deep-dive discussions on volatile and non-volatile memory technologies, covering their basic memory cell structures, operations, different computational memory designs and the challenges associated with them. Specific case studies and potential applications are provided along with their current status and commercial availability in the market.



Baker Mohammad is the director of System on Chip center and professor of EECS at Khalifa University. Dr. Mohammad is a senior member of IEEE and a member of the Mohammed bin Rashid Academy of Scientists. Prior to joining Khalifa University, he was a Senior Staff Engineer/Manager at Qualcomm, Austin, Tx, USA, for 6-years, where he was engaged in designing high-performance and low-power DSP processors used for communication and multi-media application. Before joining Qualcomm, he worked for 10 years at Intel Corporation on a wide range of microprocessors design from high-performance, server chips > 100Watt (IA-64), to mobile embedded processor low power sub 1 watt (xscale). He has over 16 years of industrial experience in microprocessor design, emphasizing memory, low power circuit, and physical design. Baker earned his Ph.D. from the University of Texas at Austin in 2008, his M.S. degree from Arizona State University, Tempe, and BS degree from the University of New Mexico, Albuquerque, all in ECE. His research interests include VLSI, power-efficient computing, embedded memory and in-memory computing, neuromorphic computing, emerging technology such as Memristor, STTRAM, hardware accelerators for Cyber-Physical Systems and AI. He is also engaged in a microwatt range computing platform for wearable electronics and WSN focusing on energy harvesting, power management, and power conversion, including efficient dc/dc, ac/dc converters. Baker authored/co-authored over 200 referred journals and conference proceedings, >3 books, >18 US patents, multiple invited seminars/panelists, and the presenter of >3 conference tutorials, including one tutorial on Energy harvesting and Power management for WSN at the 2015 (ISCAS). Baker is an associate editor for IEEE Access, IEEE Transaction on VLSI (TVLSI), and Scientific Reports journals. Dr Mohammad participates in many technical committees at IEEE conferences and reviews for TVLSI, IEEE Circuits and Systems journals. He has received several awards, including the KUSTAR staff excellence award in intellectual property creation, IEEE TVLSI best paper award, 2016 IEEE MWSCAS Myrill B. Reed best paper award, Qualcomm Qstar award for excellence on performance and leadership. SRC Techon best session papers for 2016 and 2017. 2009 Best paper award for Qualcomm Qtech conference and Intel Involve in the community award for volunteer and impact on the community.

Yasmin Halawani is a Postdoctoral Fellow at Khalifa University in Abu Dhabi, UAE.


Erscheint lt. Verlag 25.9.2023
Zusatzinfo VII, 143 p. 77 illus., 66 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Technik Elektrotechnik / Energietechnik
Schlagworte Artificial Intelligence Algorithms • Brain-inspired processor architectures • computational memory • In-memory computing • Memory centric computing
ISBN-10 3-031-34233-X / 303134233X
ISBN-13 978-3-031-34233-2 / 9783031342332
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 68,35
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 68,35
Der Weg zur professionellen Vektorgrafik

von Uwe Schöler

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
CHF 29,30