Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Neural Interface Engineering (eBook)

Linking the Physical World and the Nervous System

Liang Guo (Herausgeber)

eBook Download: PDF
2020 | 1st ed. 2020
VIII, 438 Seiten
Springer International Publishing (Verlag)
978-3-030-41854-0 (ISBN)

Lese- und Medienproben

Neural Interface Engineering -
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides a comprehensive reference to major neural interfacing technologies used to transmit signals between the physical world and the nervous system for repairing, restoring and even augmenting body functions. The authors discuss the classic approaches for neural interfacing, the major challenges encountered, and recent, emerging techniques to mitigate these challenges for better chronic performances.  Readers will benefit from this book's unprecedented scope and depth of coverage on the technology of neural interfaces, the most critical component in any type of neural prostheses.

  • Provides comprehensive coverage of major neural interfacing technologies;
  • Reviews and discusses both classic and latest, emerging topics;
  • Includes classification of technologies to provide an easy grasp of research and trends in the field.



Liang Guo received the B.E. degree in biomedical engineering from Tsinghua University, Beijing in 2004 and the Ph.D. degree in bioengineering from Georgia Institute of Technology, Atlanta, GA in 2011. His Ph.D. research with Professor Stephen P. DeWeerth focused on the development of high-density stretchable microelectrode arrays for neural and muscular surface interfacing. He worked with Professors Robert S. Langer and Daniel G. Anderson at Massachusetts Institute of Technology, Cambridge, MA as a postdoctoral associate on neural tissue engineering and regenerative medicine. He started as an assistant professor of Electrical and Computer Engineering and Neuroscience in September 2013 at The Ohio State University. His primary research interests are in neural interface engineering and biocircuit engineering as applied to neuroscience and neural prosthetics. Among other honors, he was awarded the Defense Advanced Research Projects Agency (DARPA) Young Faculty Award in 2017, the National Science Foundation (NSF) Faculty Early Career Development (CAREER) Award in 2018, and the OSU College of Engineering Lumley Research Award in 2018.

Preface 5
Contents 7
Chapter 1: Electroencephalography 9
1.1 Introduction to Electroencephalography 9
1.2 Introduction to Brain Anatomy 10
1.3 Brain Rhythms 11
1.4 EEG Data Acquisition 13
1.4.1 EEG Sensors 13
1.4.2 EEG Electrode Placement 13
1.4.3 Amplifiers 14
1.4.4 Digitization 16
1.4.5 Temporal Filtering 17
1.5 Artifacts 18
1.6 Spatial Filtering 19
1.7 Tripolar Concentric Ring Electrodes 20
1.8 Conclusion 22
References 23
Chapter 2: Functional Magnetic Resonance Imaging-Based Brain Computer Interfaces 25
2.1 Introduction to fMRI-BCI 25
2.2 fMRI Physics, Technology, and Techniques 27
2.2.1 MRI and fMRI 27
2.2.2 EPI 27
2.2.3 T1, T2, and T2* Lifetimes 28
2.2.4 Spin Echo and Gradient Echo Technique 29
2.2.5 fMRI Imaging of Hemodynamic Responses 29
2.2.6 BOLD 30
2.2.7 Other Methods 31
2.3 Real-Time fMRI Signal Analysis 32
2.3.1 Signal Preprocessing in fMRI-BCI 32
2.3.2 Brain Signal Analysis in fMRI-BCI 33
Univariate Signal Analysis 33
Machine Learning–Based Multivariate Signal Analysis 33
2.4 Real-Time fMRI-BCI: Enabling Communication Interface and Prosthetic Control 34
2.4.1 Signal Classification with fMRI 35
Varied Cognitive Function 36
Motion 37
Higher-Order Cognitive Function 39
2.4.2 fMRI-BCI for Controlling External Devices 40
2.5 rt-fMRI-BCI: Neurofeedback for Neuroscience Research and Therapeutic Applications 40
2.5.1 Neuroplasticity 41
2.5.2 Application of fMRI-BCI to Neuroscience Research 42
2.5.3 Application of fMRI-BCI to Clinical Therapy 42
Psychological Disorders 44
Rehabilitation 47
Enhancement in Healthy Subjects 48
2.6 Limitations 48
2.7 Conclusion 49
References 50
Chapter 3: Transcranial Magnetic Stimulation 56
3.1 Introduction 56
3.2 History of TMS 56
3.3 Current Applications of TMS 60
3.4 Potential Mechanisms of TMS Therapy 62
3.5 TMS Stimulation Protocol and Device Design Considerations 65
3.6 Future Perspectives 66
3.7 Summary 69
References 70
Chapter 4: Intracortical Electrodes 73
4.1 Introduction 73
4.2 Types of Intracortical Electrodes 75
4.2.1 Wire-Based Intracortical Electrodes 75
4.2.2 Micromachined Intracortical Electrodes 78
4.3 Intracortical Recording 82
4.3.1 Placement of Intracortical Electrodes 82
4.3.2 Data Acquisition and Analyses 85
4.3.3 BMI 89
4.4 Challenges 91
4.4.1 FBR 91
4.4.2 Materials Science in Controlling FBR 92
4.4.3 Bioactive Intervention in Controlling FBR 94
4.5 Summary 95
References 96
Chapter 5: Peripheral Nerve Electrodes 101
5.1 Introduction 101
5.2 Peripheral Nerve Electrodes 102
5.2.1 Cuff Electrodes 102
5.2.2 Intrafascicular Electrodes 103
5.2.3 Regenerative Electrodes 104
5.3 Challenges and Strategies on Electrode Design 104
5.3.1 Toward Better Selectivity and SNR 104
Selectivity 104
SNR 110
5.3.2 Toward a Better Tissue–Device Interface 111
Innovations on Structural Design 112
Innovations on Materials 116
5.3.3 Toward Easier Surgical Operation and Implantation 117
Modification of Electrodes 117
Modification of Device Wirings 119
5.4 Conclusion 121
References 121
Chapter 6: Failure Modes of Implanted Neural Interfaces 128
6.1 Introduction 128
6.1.1 Neural Implants: A Broad Spectrum of Devices and Applications 128
6.1.2 The Timetable of Post-implantation Events 129
6.1.3 The Configuration of a Generic Neural Implant 131
6.1.4 Reporting of Adverse Events 133
6.2 Causal Failure Classification 134
6.2.1 Types of Neural Implant Failures 134
6.2.2 Patient-Related Effects 137
6.2.3 Device Operation-Related Effects 137
Handling and Storage Errors 137
Battery Life 138
6.2.4 Shortcomings in Design 138
6.2.5 Material Issues 139
Material Biocompatibility as Harmlessness 140
Material Biocompatibility in the Sense of Biostability 141
Mechanical Mismatch 141
6.2.6 Iatrogenic Events 142
Surgical Events 142
Inadequate Device Use 143
6.3 Abiotic Failure Mechanisms 144
6.3.1 Electromagnetic Interferences 144
6.3.2 Hardware Failures 144
Leads and Connectors 144
Encapsulations, Passivation Layers, and Insulations 145
Mechanical Forces 145
Tethering and Micro-Motion 146
Uncompensated Mechanical Forces Trigger Deleterious Mechanisms 147
Mechanical Damage to the Electrode 147
6.3.3 Material and Energy Exchange 147
Ultrasound 147
Electricity 148
Electromagnetic Interference 149
Light 149
Ionizing Radiation 150
Thermal Effects 150
Charge and Mass Transfer 150
6.4 Biotic Failure Mechanisms 151
6.4.1 Bio-Mechanical Properties of the Brain 151
6.4.2 Biologic Reaction Mechanisms 153
The BBB and BNB 153
Inflammatory Reaction 155
The Reactive Oxygen Species (ROS) 156
Diffuse Reactions 157
Resulting Tissue Changes 158
6.4.3 Infections 159
6.5 Phenomenology of Preclinical In Vivo Studies 159
6.5.1 Utah Array 160
6.5.2 Wire Arrays 160
6.5.3 Silicon Probes 161
6.6 Failure Mitigation 162
6.6.1 Severity Evaluation 162
6.6.2 Prevention 163
6.6.3 Early Detection 163
6.6.4 Diagnostic Means 164
6.7 Concluding Remarks 165
References 165
Chapter 7: Strategies to Improve Neural Electrode Performance 178
7.1 Introduction 178
7.2 Improvement Strategies 179
7.2.1 Implantation Methods 179
7.2.2 Electrode Fixation 184
7.2.3 Physical Design Parameters of the Electrode 186
7.2.4 Material Composition of the Electrode 189
7.2.5 Novel Interface Technologies 194
7.3 Recording Versus Stimulation Electrodes 198
7.4 Conclusion 199
References 200
Chapter 8: 3D Cell Culture Systems for the Development of Neural Interfaces 205
8.1 Introduction 205
8.1.1 The Role of 3D Culture Neuronal Interface Research 205
8.1.2 Cells and ECM Components of the Nervous System 206
8.2 Explant and Ex Vivo Approaches 208
8.2.1 Explant Culture Types 209
8.2.2 Use of Ex Vivo Systems in Neural Interface Development 212
Electrical Stimulation and Recording Interfaces 212
Understanding Mechanical, Chemical and Physical Interactions 212
8.3 Cell Biology–Based Models 214
8.3.1 Non-neuronal/Mixed Cell Type Culturing Approaches 216
8.4 Materials and Engineering-Based Models 217
8.4.1 Biomaterial Approaches 217
8.4.2 Bioprinting 222
Bioprinting Methods 222
3D Printed Neural Cell Culture Systems 224
8.4.3 Microfluidics in 3D Culture 227
Microfluidic Approaches 227
Application of Microfluidics in 3D Neural Culture 228
8.5 Conclusions 230
References 231
Chapter 9: Conductive Hydrogels for Bioelectronic Interfaces 241
9.1 Introduction 241
9.2 Classification of Conductive Hydrogels 243
9.2.1 Nanocomposite Hydrogels 243
9.2.2 Ionogels 245
9.2.3 Conductive Polymer-Based Hydrogels 246
Routes to Incorporating CPs in Hydrogels 247
Examples of Hydrogels Containing CPs 249
9.3 Electromechanical Properties of Conductive Hydrogels 251
9.3.1 Electrical Properties of Conductive Hydrogels 251
9.3.2 Mechanical Characterization 253
9.4 Fabrication Methods (Patterning) Compatible with Conductive Hydrogels 257
9.5 Applications 261
9.6 Conclusions and Future Outlook 264
References 264
Chapter 10: Biofluid Barrier Materials and Encapsulation Strategies for Flexible, Chronically Stable Neural Interfaces 270
10.1 Introduction 270
10.2 Overview of Emerging Flexible Bioimplants for Neuroengineering 271
10.3 Conventional Encapsulation Strategies for Neural Electrodes 274
10.4 Thermally Grown SiO2 as Capacitive Interface for Flexible Bio-integrated Electronics 276
10.5 Heavily Doped, Highly Conductive Monocrystalline Si Interface for Sensing and Stimulation 278
10.6 Challenges and Perspectives 281
References 281
Chapter 11: Regenerative Neural Electrodes 284
11.1 Introduction 284
11.2 Regenerative Conduit 287
11.3 Conduit Interface 289
11.3.1 Sieve Electrode Interface 291
11.3.2 Microchannel Interface 292
11.3.3 Rolled Polyimide Interface 293
11.3.4 Rolled PDMS Interface 294
11.3.5 Texas Peripheral Nerve Interface 295
11.4 Conclusion 296
References 297
Chapter 12: Passive RF Neural Electrodes 302
12.1 Introduction 302
12.2 Passive Devices 303
12.2.1 System Overview 303
12.2.2 Interrogator Antennas 306
12.2.3 Implanted Antennas 307
12.2.4 Disadvantages of Passive Systems 308
12.3 Fully Passive Devices 308
12.3.1 System Overview 308
12.3.2 Signal Attenuation and Operating Frequency Selection 309
12.3.3 Proof of Concept Fully Passive Implant with Low Sensitivity 310
12.3.4 Improving the Sensitivity of Fully Passive Implants 314
12.3.5 Multichannel Configurations 319
12.3.6 Real-World Considerations 320
12.4 Conclusion 321
References 321
Chapter 13: Wireless Soft Microfluidics for Chronic In Vivo Neuropharmacology 323
13.1 Introduction 323
13.2 Required Conditions for Chronic Microfluidic Interfaces with Neural Tissue 324
13.3 Compliant Microfluidic Probes for Biomechanical Compatibility 325
13.4 Micro-Pumps and Wireless Technologies for Self-Contained Microfluidic Systems 328
13.4.1 Types of Micro-Pumps 328
Micro-Pumps with an Activatable Membrane 328
Thermally Activatable Pumps 328
Electrochemically Activatable Pumps 330
Magnetically Activatable Pumps 330
Motor-Based Peristaltic Pumps 330
13.4.2 Wireless Technologies 330
Battery-Powered IR Microfluidic Devices 331
Fully Implantable RF Optofluidic Devices 332
Smartphone-Controlled Lego Optofluidic Devices 333
13.5 Conclusion 335
References 335
Chapter 14: Gold Nanomaterial-Enabled Optical Neural Stimulation 339
14.1 Introduction 339
14.2 Critical Factors for Designing Gold Nanomaterial-Enabled Optical Neural Stimulation 341
14.3 Development of Gold Nanomaterial-Enabled Neural Stimulation 341
14.4 Challenges and Opportunities 346
References 347
Chapter 15: Nanomaterial-Assisted Acoustic Neural Stimulation 349
15.1 Introduction 349
15.2 Piezoelectric Nanostructured Materials Applied to Nanomedicine 351
15.3 Nanoparticle-Assisted Piezoelectric Stimulation of Neural Cells 352
15.3.1 Wireless Nanoparticle-Assisted Modulation of Electrophysiological Activity 352
15.3.2 Ultrasonic Fields for Neuromodulation 353
15.3.3 Indirect Proofs and First Demonstration of Neural Activation upon Piezoelectric Nanoparticle-Assisted Stimulation 354
15.3.4 Electrophysiological Recording of Primary Cultures: Our Results 355
15.4 Piezoelectric Devices for In Vivo Neural Stimulation and Regeneration 360
15.5 Conclusions 363
References 363
Chapter 16: Perspectives for Seamless Integration of Bioelectronic Systems in Neuromedicine 366
16.1 Introduction 366
16.2 Cellular Stimulation 367
16.3 Modes of Stimulation 368
16.3.1 Thermal Methods 370
16.3.2 Electrochemical and Photoelectrochemical Methods 372
16.3.3 Mechanical Methods 373
16.4 Making Nanomaterial Choices for Seamless Integration 375
16.5 Toward Seamless Integration in Neuromedicine 376
16.5.1 Mesh Nanoelectronics 378
16.5.2 Hydrogel Bioelectronics 379
16.6 Conclusions and Outlook 379
References 380
Chapter 17: Voltage-Sensitive Fluorescent Proteins for Optical Electrophysiology 383
17.1 Introduction 383
17.2 Recording of Neuronal Activity 384
17.2.1 Electrode-Based Approaches 385
17.2.2 Optical Approaches 385
17.3 Genetically Encoded Reporters of Neural Activity 387
17.3.1 Genetic Delivery and Cell Type-Specific Expression 388
17.3.2 Genetically Encoded Calcium Indicators 389
17.3.3 Genetically Encoded Voltage Indicators 389
Voltage-Sensing Domain-Based GEVIs 390
Opsin-Based GEVIs 393
Hybrid GEVIs 395
17.3.4 Choosing a GEVI 396
Recording Membrane Voltage In Vivo 396
Combination with Optogenetic Actuators 396
17.4 Equipment for Optical Imaging of Neuronal Activity 397
17.5 Analysis of Optical Neuronal Activity Data 402
17.6 Conclusion and Outlook 403
References 404
Chapter 18: Optogenetics 408
18.1 History 408
18.2 Biological Mechanism 409
18.2.1 Opsin Classes 410
18.2.2 Optimizing Opsin Characteristics 412
18.3 Optogenetic Expression Systems 413
18.4 Optical Neural Interfaces 415
18.5 Toward a Brighter Future 417
References 419
Index 421

Erscheint lt. Verlag 4.5.2020
Zusatzinfo VIII, 438 p. 153 illus., 128 illus. in color.
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte brain-computer interfacing • brain-machine interface • Neural Engineering • Neural Signals, Recording and Stimulation • Neuroprosthetics
ISBN-10 3-030-41854-5 / 3030418545
ISBN-13 978-3-030-41854-0 / 9783030418540
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 17,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 65,45