Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Plant Nanobionics (eBook)

Volume 2, Approaches in Nanoparticles, Biosynthesis, and Toxicity

Ram Prasad (Herausgeber)

eBook Download: PDF
2019 | 1st ed. 2019
XVII, 488 Seiten
Springer International Publishing (Verlag)
978-3-030-16379-2 (ISBN)

Lese- und Medienproben

Plant Nanobionics -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Plant Nanobionics, Volume 2 continues the important discussion of nanotechnology in plants, but focuses with a focus on biosynthesis and toxicity.

This book discusses novel approaches to biosynthesis of nanoparticles for the increase of plant production systems, controlled release of agrochemicals and management of plant biotic stress. Green biosynthesis of metallic nanoparticles from bee propolis, artificial photosynthesis and hybrid structures are presented.

Although engineered nanoparticles have great potential for solving many agricultural and societal problems, their consequences on the ecosystems and environment must be responsibly considered. This volume aims to contribute to the limited literature on this topic through its comprehensive examination of nanoparticle toxicity on plants, microbes and human health. Environmental risks with recent data are discussed as well as risks associated with the transfer of nanoparticles through the food chain.

This volume highlights the study of a mechanistic approach and the study of nanoparticles towards nanobionics. The application of polymeric materials for smart packing in the food industry and agriculture sector as well as the future of nanomaterials in detecting soil microbes for environmental remediation are also included.    



Ram Prasad, Ph.D. is associated with Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India since 2005. His research interests include applied microbiology, plant-microbe-interactions, sustainable agriculture and nanobiotechnology. Dr. Prasad has more than a hundred publications to his credit, including research papers, review articles, book chapters, five patents issued or pending and several edited or authored books. Dr. Prasad has twelve years of teaching experience and has been awarded the Young Scientist Award (2007) and Prof. J.S. Datta Munshi Gold Medal (2009) by the International Society for Ecological Communications; FSAB Fellowship (2010) by the Society for Applied Biotechnology; the American Cancer Society UICC International Fellowship for Beginning Investigators, USA (2014); Outstanding Scientist Award (2015) in the field of Microbiology by the Venus International Foundation; BRICPL Science Investigator Award (ICAABT-2017) and Research Excellence Award (2018). He serves as an editorial board member for Frontiers in Microbiology, Frontiers in Nutrition, Academia Journal of Biotechnology and is the series editor of the Nanotechnology in the Life Sciences, Springer Nature, USA. Previously, Dr. Prasad served as Visiting Assistant Professor, Whiting School of Engineering, Department of Mechanical Engineering at Johns Hopkins University, USA and presently works as a Research Associate Professor at the School of Environmental Sciences and Engineering, Sun Yat-Sen University, Guangzhou, China.

Foreword 6
Preface 9
Contents 11
Contributors 13
About the Author 17
Chapter 1: Carbon Dots Synthesized from Green Precursors with an Amplified Photoluminescence: Synthesis, Characterization, and Its Application 18
1.1 Carbon Dots (CDs) 19
1.2 Carbon Dots Synthesized from Green Precursors 20
1.3 Synthesis 23
1.4 Top-Down Approaches 23
1.4.1 Arc Discharge 24
1.4.2 Electrochemical Carbonization 25
1.4.3 Laser Ablation 26
1.5 Bottom-Up Approaches 27
1.5.1 Combustion 27
1.5.2 Hydrothermal/Solvothermal 28
1.5.3 Microwave Irradiation 29
1.6 Structural Properties 30
1.6.1 Surface Properties (XPS and FTIR) 30
1.6.2 Internal Structural Properties (HRTEM, Raman, and XRD) 30
1.7 Other Properties 32
1.7.1 Optical Absorption 32
1.7.2 Excitation Wavelength-Dependent Fluorescence 35
1.7.3 Upconverted Photoluminescence (UCPL) 35
1.7.4 Electron Transfer Property 35
1.8 Applications 36
1.8.1 Bioimaging 37
1.8.2 Sensing 39
1.8.3 Biomedicine (Drug Delivery and Gene Transfer) 41
1.8.4 Photocatalysis 43
References 44
Chapter 2: Perovskite Oxide–Based Photocatalysts for Excellent Visible Light–Driven Photocatalysis and Energy Conversion 51
2.1 Introduction 52
2.2 Synthesis Methods of Perovskite Oxides 53
2.2.1 Solid-State Method 54
2.2.2 Coprecipitation Method 54
2.2.3 Hydrothermal Method 55
2.3 Overview of Perovskite Oxides in Photocatalysis 55
2.3.1 Titanium-Based Perovskite Oxides 56
2.3.2 Tantalum-Based Perovskite Oxides 57
2.3.3 Niobium-Based Perovskite Oxides 59
2.4 Applications and Catalytic Studies of Perovskite Oxides 60
2.4.1 Photocatalytic Water Splitting 62
2.4.2 Photodegradation of Organic Pollutants 63
2.4.3 Photocatalytic Conversion of Carbon Dioxide to Fuels 64
2.4.4 Other Applications 65
2.5 Future Perspectives 66
2.6 Conclusion 67
References 67
Chapter 3: Biogenic Material With Iron Nanoparticles for As(V) Removal 71
3.1 Introduction: Arsenic in the Water 71
3.1.1 Arsenic in Drinking Water for Human Consumption 72
3.2 Methods for Arsenic Removal 73
3.2.1 Iron Nanoparticles 73
3.3 Material Synthesis 74
3.3.1 Composition and Characterization of Pineapple Peel 75
3.3.2 Neutron Activation Analysis (NAA) 78
3.3.3 X-Ray Photoelectron Spectroscopy (XPS) 81
3.3.4 Specific Surface Area and Isoelectric Point 83
3.3.5 As(V) Sorption Studies 84
3.4 Conclusions 87
References 89
Chapter 4: Potential of Biogenic Plant-Mediated Iron and Iron Oxide Nanoparticles and Their Utility 92
4.1 Introduction 92
4.2 Contrast Agents for Magnetic Resonance Imaging 97
4.3 Wastewater Treatment 102
4.4 Sensors/Biosensors/Nanosensors/Nanobiosensors 105
4.5 Antimicrobial/Bactericidal Agents 107
4.6 Cancer/Tumor Therapy 109
4.7 Drug Delivery 113
4.8 Catalysts/Photocatalysts 115
4.9 Future Perspectives 116
4.10 Conclusion 116
References 117
Chapter 5: Potential of Biogenic Plant-Mediated Copper and Copper Oxide Nanostructured Nanoparticles and Their Utility 129
5.1 Introduction 129
5.2 Biosensing 131
5.3 Catalysts 138
5.4 Optoelectronics 152
5.5 Wastewater Removal and Its Purification 153
5.6 Anticancer Activity 154
5.7 Antimicrobial/Antibacterial Activity 157
5.8 Antioxidant Activity 161
5.9 Imaging Agents 162
5.10 Drug Delivery Agents 164
5.11 Diagnosis and Therapeutic Agents 165
5.12 Future Perspectives 168
5.13 Conclusions 169
References 169
Chapter 6: Applications of Nanomaterials and Future Prospects for Nanobionics 191
6.1 Introduction 192
6.2 Roles of Nanomaterials in Plant Growth 193
6.3 Plant Nanobionics 195
6.3.1 Architecture of the Plant Cell Wall in Terms of Nanobionics 196
6.3.2 Supercharged Photosynthesis: Processes Involved in the Photosynthetic Machinery 196
6.3.3 Engineered Nanomaterials and Photosynthesis 197
6.4 Applications of Nanomaterials 198
6.4.1 Food and Agriculture 198
6.4.2 Gene Delivery Systems 200
6.5 Microbial Nanobionics 204
6.5.1 Microbial Cell Factories 204
6.5.2 Microbial Fuel Cells 206
6.6 Nanobionic Engineering of Plant Organelles 207
6.7 Conclusions and Future Work 209
References 209
Chapter 7: Nanomaterials, Polymers, and Smart Packaging for Food Materials 212
7.1 Introduction to Nanotechnology 212
7.2 Nanostructured Materials Used in the Food Industry 214
7.2.1 Liposomes 216
7.2.2 Nanoemulsions 217
7.2.3 Polymeric Nanocomposites 218
7.2.4 Nanoparticles 219
7.2.5 Films 221
7.3 Smart Packaging 222
7.3.1 Applications and Uses of Smart Packaging 223
7.3.2 Biodegradability 226
7.4 Future Perspectives 226
References 227
Chapter 8: Polymeric Nanoparticles in Foods 230
8.1 Introduction 231
8.2 Nanotechnology 231
8.3 Food Nanotechnology 232
8.4 Polymeric Nanoparticles 232
8.4.1 Nanocapsules 233
8.4.2 Nanospheres 233
8.4.3 Polymers Used in the Formation of Nanoparticles 234
8.4.4 Advantages of the Use of Polymeric Nanoparticles 235
8.4.5 Controlled Release of Polymer Nanoparticles 235
8.5 Nanoencapsulation of Bioactive Substances 236
8.5.1 Important Bioactive Substances in Food 237
8.5.1.1 Antioxidants 237
8.5.1.2 Antimicrobials 239
8.5.1.3 Colorants 240
8.6 Food Applications 240
8.6.1 Browning Inhibitors by Application of Nanocapsules of ?-Tocopherol in Apple 241
8.6.2 Nanostructured Nisin in Orange Juice 241
8.6.3 Conservation of Tuna Fish with Liquid Smoke Nanoparticles 242
8.6.4 Nanostructured Nisin Antimicrobials in Lean Beef 242
8.6.5 Controlled Release of ?-Carotene in Fresh Cut Melon 242
8.7 Conclusions and Future Trends 243
References 243
Chapter 9: Application of Nanoparticles in Crop Production and Protection 247
9.1 Introduction 247
9.2 Classification of Nanomaterials 248
9.2.1 Carbon-based Materials 248
9.2.1.1 Fullerenes 249
9.2.1.2 Carbon Nanotubes (CNTs) 249
9.2.2 Metal-Based Materials 250
9.2.3 Dendrimers 250
9.2.4 Composites 250
9.3 Role of Nanoparticles in Plant Growth and Development 251
9.3.1 NPs Have a Wide Range of Application in Different Plant Processes 255
9.3.2 Effect of NPs in Seed Germination 255
9.3.3 Effect of NPs in Photosynthesis 256
9.3.4 Utilization of NPs in Disease Management 257
9.4 Toxicity of Nanoparticles 258
9.5 Conclusion and Future Prospects 259
References 260
Chapter 10: Nanopesticide: Future Application of Nanomaterials in Plant Protection 266
10.1 Introduction 267
10.2 Developing Nanopesticide 267
10.2.1 Definition and Concept of Nanomaterials in Developing Nanopesticide 267
10.2.2 Pesticide Nanoformulation 268
10.3 Metal-based Nanopesticide 270
10.3.1 Metal Nanoparticle Synthesis 270
10.3.2 Mode of Action 271
10.3.3 Metal Nanoformulation 275
10.4 Essential Oil-based Nanopesticide 279
10.4.1 Plant Essential Oil 279
10.4.2 Essential Oil Nanoformulation 280
10.4.3 Mode of Action 282
10.5 Agrochemical and Bioactive Agent/Material-based Nanopesticide 284
10.5.1 Agrochemical Pesticide Nanoformulations 284
10.5.2 Bioactive Agent Nanoformulation 289
10.6 Commercial Product and Uses of Nanopesticide 291
10.7 Future Prospects and Challenges of Nanopesticide Formulation and Application in Plant Pest and Disease Management 293
10.8 Conclusion and Suggestion 296
References 297
Chapter 11: Nanotechnology: An Emerging Tool for Management of Biotic Stresses in Plants 310
11.1 Introduction 311
11.2 Important Nanoparticles Used in Plant Protection and Their Synthesis 312
11.3 Synthesis of Nanoparticles 313
11.3.1 Application of Nanotechnology 313
11.3.1.1 Role of Nanotechnology in Detection and Diagnosis of Biotic Stresses in Plants 313
11.3.1.2 Nanoparticles 315
11.3.1.3 Nanoscale Biosensors 315
11.3.1.4 Quantum Dots 316
11.3.1.5 Nanobarcodes 316
11.3.1.6 Nano Diagnostic Kit 316
11.3.1.7 Nanofabrication 317
11.3.1.8 Nanopore Sequencing System 317
11.3.1.9 Nanoparticles in MicroRNA Detection 317
11.3.2 Role of Nanotechnology in Plant Disease Management 318
11.3.2.1 Silver Nanoparticles 318
11.3.2.2 Silica Nanoparticles 318
11.3.2.3 Copper Nanoparticles 319
11.3.2.4 Zinc Oxide Nanoparticles 319
11.3.2.5 Chitosan-based Nanoparticles 319
11.3.3 Role of Nanotechnology in Insect Pest Management 320
11.3.4 Role of Nanotechnology in Weed Management 320
11.3.5 Role of NPs on Plant Growth Enhancement 322
11.4 Mechanism of NPs-Plant Interaction Against Biotic Stresses 325
11.4.1 Uptake and Translocation of NPs 325
11.4.2 Mechanisms of Nanoparticles-Plant Interaction in Response to Biotic Stresses 326
11.4.3 Direct Attachment of NPs with Plant Pathogens 326
11.4.3.1 ROS Production (Destructive or Signaling Role) 326
11.4.3.2 Other Mechanisms 327
11.4.3.3 Mechanisms of NPs-Insect Interaction 328
11.5 Types of Nanoformulation Used in Plant Protection 328
11.5.1 Nanogel 329
11.5.2 Nanoemulsions 329
11.5.3 Nanoencapsulation 330
11.5.4 Nanosuspensions 330
11.6 Polymer-based Nanoformulations 330
11.6.1 Fungicide Formulation 331
11.6.2 Insecticide Formulation 331
11.6.3 Herbicide Formulation 332
11.7 Smart Delivery System of Nanoformulation 332
11.7.1 In Vitro Methods of Application 333
11.7.1.1 Aeroponics 333
11.7.1.2 Hydroponics 333
11.7.2 In Vivo Methods of Application 333
11.7.2.1 Soil Application 333
11.7.2.2 Foliar Application 334
11.8 Limitations and Potential Risks of Nanotechnology 334
11.9 Future Prospects 335
11.10 Conclusion 335
References 336
Chapter 12: Plant Nanobionics: Application of Nanobiosensors in Plant Biology 347
12.1 Introduction 348
12.1.1 Sensitivity 351
12.1.2 Stability 351
12.1.3 Selectivity 352
12.2 The Biological Components of Nanobiosensors (NBSs) 352
12.2.1 Principles of Molecular Recognition 353
12.2.2 Molecular Basics of Ag–Ab Interaction 354
12.2.3 Types of Biological Components 357
12.3 Integration of Biological Components into NBSs 360
12.4 NBSs Based on DNA, Nanotubes, and Semiconductor Polymers 361
12.4.1 The Gold Electrode 362
12.4.2 Graphite Electrode 362
12.4.3 Kinetics of Enzymes Used in NBSs 363
12.5 Recent Advances in Electrochemical NBSs 364
12.5.1 Classification 366
12.5.2 The Biocatalytic Recognition Element Receptor 366
12.5.3 Receptor: Antagonist/Agonist 368
12.5.4 Indirect Inhibitor or Activator Monitoring of Biochemical Receptors 368
12.5.5 Immobilization of Biological Receptors 369
12.6 Internal Membranes and External Membranes 370
12.6.1 Clark Electrode: Applications in Plant Nanobionics 371
12.6.2 The Enzymatic Electrode 372
12.7 Fiber-Optic Biosensors (FOBS) in Plant Nanobionics 374
12.8 Applications in Plant Nanobionics 374
12.9 Genes for the Synthesis of Enzymes or Enzyme Inhibitors with Insecticidal Effect 379
12.10 Conclusions and Remarks 383
References 384
Chapter 13: Toxicity of Nanomaterials in Plants and Environment 387
13.1 Introduction 387
13.2 Toxicity Effects of NMs on Plant Growth 388
13.2.1 Plant Uptake of ENMs 388
13.2.2 Carbon Based Engineered Nanomaterials 389
13.2.2.1 Carbon Nanotubes 389
13.2.2.2 Graphene and Graphene Oxide 389
13.2.3 Metal and Metal Oxide Engineered Nanomaterials 393
13.2.3.1 Gold (Au) 394
13.2.3.2 Silver (Ag) 395
13.2.3.3 Cadmium (Cd) 397
13.2.3.4 Titanium Oxide (TiO2) 398
13.2.3.5 Aluminum (Al) 400
13.2.3.6 Fe3O4 401
13.2.3.7 Zinc (Zn) 402
13.2.3.8 Copper (Cu) 403
13.2.3.9 Other Metal 404
13.3 Effect of ENMs on the Toxicity of Environmental Pollutants 404
13.3.1 Carbon Nanomaterials 404
13.3.2 Metal and Metal Oxide Nanoparticles 407
13.4 Conclusions 408
References 409
Chapter 14: Nanocellulose as Polymer Composite Reinforcement Material 418
14.1 Introduction 418
14.1.1 Cellulose Nanocrystals Plant Derived 421
14.2 Distinguishable Properties of CNCs for Reinforcement Material 422
14.3 CNC Production Steps 423
14.4 Characterization of Nanocellulose 425
14.4.1 Measurement of Zeta Potential (?) 425
14.4.2 X-Ray Diffraction (XRD) 427
14.4.3 Thermal Analyses 427
14.4.3.1 Thermogravimetric Analysis (TGA) 427
14.4.3.2 Differential Scanning Calorimetry (DSC) 427
14.4.3.3 Fourier Transform Infrared (FTIR) Spectroscopy 428
14.4.4 Microscopy 428
14.4.4.1 Scanning Electron Microscopy (SEM) 428
14.4.4.2 Transmission Electron Microscopy (TEM) 429
14.4.4.3 Atomic Force Microscopy (AFM) 429
14.4.5 Dynamic Light Scattering (DLS) for Measurement of Particle Size 429
14.4.6 Birefringence Analysis 430
14.4.7 Inverse Gas Chromatography (IGC) Analysis 430
14.4.8 Rheological Characterization 430
14.5 Modifications Achievable in Nanocellulose Crystals 431
14.6 Conclusion 433
References 433
Chapter 15: Nanomaterials and Their Applications in Bioimaging 437
15.1 Introduction 438
15.2 Nanomaterials for Bioimaging 439
15.2.1 Gold Nanoparticles 439
15.2.2 Silica Nanoparticles 440
15.2.3 Magnetic Nanoparticles 441
15.2.4 Quantum Dots 442
15.2.5 Carbon Nanotubes 443
15.2.6 Fullerenes 443
15.2.7 Graphene 444
15.3 Applications of Nanoparticles in Different Bioimaging Modalities 445
15.3.1 Magnetic Resonance Imaging 445
15.3.2 Computed Tomography 446
15.3.3 Positron Emission Tomography 448
15.3.4 Ultrasound Imaging 449
15.3.5 Fluorescence Imaging 450
15.3.6 Photoacoustic Imaging (PAI) 451
15.4 Conclusion 452
References 453
Chapter 16: Green Engineering of Silver Nanoparticles to Combat Plant and Foodborne Pathogens: Potential Economic Impact and Food Quality 459
16.1 Introduction 460
16.2 Green Synthesis of Silver Nanoparticles Using Plant Extract 462
16.2.1 Plant Broth Preparation from Plant Extract 462
16.2.2 Single-Step Method for Green Synthesis of Silver Nanoparticles Using Plant Extract 463
16.2.3 The Mechanism of Silver Nanoparticle Synthesis Using Plant Extracts 464
16.2.4 Green Synthesis Approaches to Synthesis of Silver Nanoparticles 465
16.2.5 The Advantages of Using Green Synthesis of Silver Nanoparticles 468
16.3 Plant and Foodborne Pathogens 469
16.4 Antimicrobial Activity of Silver Nanoparticles on Plant and Foodborne Pathogens 470
16.4.1 Mechanisms of Action of Silver Nanoparticles on Microbial Pathogens 472
16.5 The Potential Benefits of Using Green Synthesis of Silver Nanoparticles in Agriculture and Food Sectors 474
16.6 Nanotechnology in Agriculture and the Food Sector: Potential Economic Impact 475
16.7 Conclusion 476
References 476
Index 485

Erscheint lt. Verlag 30.9.2019
Reihe/Serie Nanotechnology in the Life Sciences
Nanotechnology in the Life Sciences
Zusatzinfo XVII, 488 p. 69 illus., 48 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Biologie Botanik
Technik
Schlagworte Engineered nanomaterials • Nano-agrotechnology • Nano-based biosensors • Nanoengineering • Nutrient management • Plant nanotechnology • Superabsorbent materials
ISBN-10 3-030-16379-2 / 3030163792
ISBN-13 978-3-030-16379-2 / 9783030163792
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Der Baum des Lebens in neuem Licht – Eine Monographie

von Fred Hageneder

eBook Download (2024)
Neue Erde (Verlag)
CHF 28,30
Wie wir den globalen Angriff auf unsere mentale Freiheit erfolgreich …

von Dr. med. Michael Nehls

eBook Download (2023)
BookRix (Verlag)
CHF 16,60