Correlations in Low-Dimensional Quantum Gases (eBook)
XVII, 193 Seiten
Springer International Publishing (Verlag)
978-3-030-05285-0 (ISBN)
The book addresses several aspects of thermodynamics and correlations in the strongly-interacting regime of one-dimensional bosons, a topic at the forefront of current theoretical and experimental studies. Strongly correlated systems of one-dimensional bosons have a long history of theoretical study. Their experimental realisation in ultracold atom experiments is the subject of current research, which took off in the early 2000s. Yet these experiments raise new theoretical questions, just begging to be answered.
Correlation functions are readily available for experimental measurements. In this book, they are tackled by means of sophisticated theoretical methods developed in condensed matter physics and mathematical physics, such as bosonization, the Bethe Ansatz and conformal field theory. Readers are introduced to these techniques, which are subsequently used to investigate many-body static and dynamical correlation functions.
Supervisor’s Foreword 7
Abstract 8
Publications by the Author 9
References 10
Acknowledgements 11
Contents 13
1 Introduction: This Thesis 16
References 18
2 From 3D to 1D and Back to 2D 19
2.1 Introduction 19
2.2 Welcome to Lineland 20
2.2.1 Generalities on One-Dimensional Systems 20
2.2.2 Correlation Functions as a Universal Probe For Many-Body Quantum Systems 21
2.3 From 3D to 1D in Experiments 23
2.4 Analytical Methods to Solve 1D Quantum Models 27
2.4.1 Quantum Integrability and Bethe Ansatz Techniques 28
2.4.2 Exact Solution of the Tonks-Girardeau Model and Bose-Fermi Mapping 33
2.4.3 Bosonization and Tomonaga-Luttinger Liquids 38
2.4.4 Conformal Field Theory 46
2.5 From Lineland to Flatland: Multi-component Systems and Dimensional Crossovers 52
2.6 Summary of This Chapter 53
References 54
3 Ground-State Static Correlation Functions of the Lieb–Liniger Model 63
3.1 Introduction 63
3.2 Exact Ground-State Energy of the Lieb–Liniger Model 64
3.2.1 Ground-State Energy in the Finite-N Problem 64
3.2.2 Ground-State Energy in the Thermodynamic Limit 69
3.2.3 Weak-Coupling Regime 73
3.2.4 Strong- to Intermediate Coupling Regime 76
3.2.5 Illustrations 81
3.3 Local Correlation Functions 83
3.4 Non-local Correlation Functions, Notion of Connection 88
3.4.1 One-Body Non-local Correlation Function in the Tonks–Girardeau Regime 88
3.4.2 Large-Distance, One-Body Correlation Function at Finite Interaction Strength from the Tomonaga–Luttinger Liquid Formalism 90
3.4.3 Short-Distance, One-Body Correlation Function from Integrability, Notion of Connection 91
3.5 Momentum Distribution and Tan's Contact 95
3.6 Breakdown of Integrability, BALDA Formalism 96
3.6.1 Effect of a Harmonic Trap 96
3.6.2 Local-Density Approximation for the Density Profile in the Tonks–Girardeau Regime 97
3.6.3 From Local-Density Approximation to Bethe Ansatz LDA 98
3.6.4 Tan's Contact of a Trapped Bose Gas 99
3.7 Summary of This Chapter 104
3.8 Outlook of This Chapter 105
References 107
4 Dynamical Structure Factor of the Lieb–Liniger Model and Drag Force Due to a Potential Barrier 112
4.1 Introduction 112
4.2 Conceptual Problems Raised by Superfluidity, Lack of Universal Criterion 113
4.2.1 Experimental Facts, Properties of Superfluids 113
4.2.2 Landau's Criterion for Superfluidity 115
4.3 Drag Force as a Generalized Landau Criterion 117
4.4 Dynamical Structure Factor and Drag Force for a Tonks–Girardeau Gas 121
4.4.1 Dynamical Structure Factor 121
4.4.2 Drag Force Due to a Mobile, Point-Like Impurity in the Tonks–Girardeau Regime 126
4.4.3 Effect of a Finite Barrier Width on the Drag Force 127
4.5 Dynamical Structure Factor and Drag Force for a 1D Bose Gas … 129
4.5.1 State of the Art 129
4.5.2 Dynamical Structure Factor from the Tomonaga–Luttinger Liquid Theory 130
4.5.3 Drag Force from the Tomonaga–Luttinger Liquid Formalism 136
4.6 Exact Excitation Spectra from Integrability 138
4.7 Summary of This Chapter 143
4.8 Outlook of This Chapter 145
References 147
5 Dimensional Crossovers in a Gas of Noninteracting Spinless Fermions 152
5.1 Introduction 152
5.2 Energy-Momentum Space Dimensional Crossover in a Box Trap 153
5.3 Dimensional Crossovers in a Harmonic Trap 159
5.4 Low-Energy Approach for Fermions in a Box Trap, Cross-Dimensional … 162
5.5 Summary of This Chapter 165
5.6 Outlook of This Chapter 166
References 167
6 General Conclusion 169
A Complements to Chapter 2 174
A.1 Density Correlations of a Tomonaga-Luttinger Liquid in the Thermodynamic Limit at Zero Temperature 174
A.2 Density Correlations of a Tomonaga-Luttinger Liquid at Finite Temperature by Bosonization 177
A.2.1 First Contribution to the Density Correlation 177
A.2.2 Second Contribution to the Density Correlation Function 179
A.3 Density Correlations of a Tomonaga-Luttinger Liquid at Finite Size and Temperature by Bosonization 181
B Complements to Chapter 3 184
B.1 Exact Mapping from the Lieb-Liniger Model onto the Circular Plate Capacitor 184
B.2 Ristivojevic's Method of Orthogonal Polynomials 187
B.3 A General Method to Solve the Lieb Equation 189
B.4 Other Approaches to Local Correlation Functions 190
C Complements to Chapter 4 192
C.1 Around the Notion of Dynamical Structure Factor 192
C.2 Dynamical Structure Factor of the Tonks-Girardeau Gas at Zero Temperature 193
C.3 Dynamical Structure Factor of a Tomonaga-Luttinger Liquid in the Thermodynamic Limit 195
C.3.1 First Contribution: The Phonon-Like Spectrum Close to the Origin in Energy-Momentum Space 196
C.3.2 Second Contribution to the Dynamical Structure Factor: The Umklapp Region 197
C.4 Dynamical Structure Factor of a Tomonaga-Luttinger Liquid in the Thermodynamic Limit at Finite Temperature 199
C.4.1 First Contribution to the Dynamical Structure Factor of a Tomonaga-Luttinger Liquid at Finite Temperature 199
C.4.2 Second Contribution to the Dynamical Structure Factor at Finite Temperature 199
C.5 Drag Force Due to a Delta-Barrier in the Tomonaga-Luttinger Liquid Framework 202
References 203
Erscheint lt. Verlag | 29.12.2018 |
---|---|
Reihe/Serie | Springer Theses | Springer Theses |
Zusatzinfo | XVII, 193 p. 46 illus., 44 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Atom- / Kern- / Molekularphysik |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Bethe Ansatz • dimensional crossover • Dynamical Structure Factor • Lieb-Liniger model • Low-dimensional systems • Many-Body Correlation Functions • Strongly Correlated Bosons • Tan‘s Contact • Tomonaga-Luttinger Model • Ultracold Gases |
ISBN-10 | 3-030-05285-0 / 3030052850 |
ISBN-13 | 978-3-030-05285-0 / 9783030052850 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich