Nicht aus der Schweiz? Besuchen Sie lehmanns.de
World Congress on Medical Physics and Biomedical Engineering 2018 -

World Congress on Medical Physics and Biomedical Engineering 2018 (eBook)

June 3-8, 2018, Prague, Czech Republic (Vol.1)
eBook Download: PDF
2018 | 1st ed. 2019
XXIX, 894 Seiten
Springer Singapore (Verlag)
978-981-10-9035-6 (ISBN)
Systemvoraussetzungen
309,23 inkl. MwSt
(CHF 299,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book (vol. 1) presents the proceedings of the IUPESM World Congress on Biomedical Engineering and Medical Physics, a triennially organized joint meeting of medical physicists, biomedical engineers and adjoining health care professionals. Besides the purely scientific and technological topics, the 2018 Congress will also focus on other aspects of professional involvement in health care, such as education and training, accreditation and certification, health technology assessment and patient safety. The IUPESM meeting is an important forum for medical physicists and biomedical engineers in medicine and healthcare learn and share knowledge, and discuss the latest research outcomes and technological advancements as well as new ideas in both medical physics and biomedical engineering field.



Lenka Lhotská, PhD, CEng, MIET, MIEEE, graduated as Master of Science in Electrical Engineering at the Czech Technical University in Prague (CVUT), Czech Republic. In 1989 she got her PhD degree in Cybernetics from CVUT. Currently she is head of the COGSYS Department (Cognitive Systems and Neurosciences) at the Czech Institute of Informatics, Robotics and Cybernetics and head of Department of Natural Sciences of the Faculty of Biomedical Engineering, CVUT. Her research focuses on following areas: Knowledge-based systems, data and knowledge representation, application of artificial intelligence methods to medicine, digital signal processing, machine learning, feature extraction and feature selection, semantic interoperability, mobile technologies in healthcare, electronic health record. She is chair of the Working Group Personal Portable Devices of European Federation for Medical Informatics, Member of the Council of the Czech Society for Biomedical Engineering and Medical Informatics, National representative in International Society for Telemedicine and eHealth (IsfTeH), National representative in International Federation for Medical and Biological Engineering (IFMBE), and Member of the Engineering Academy of the Czech Republic.

Lucie Sukupova has been working as a clinical medical physicist in radiodiagnostics &interventional radiology at the Institute for Clinical and Experimental Medicine. She received her M.Sc. and Ph.D. in Radiological Physics from the Czech Technical University in Prague and a certification of Medical Physics Expert from EFOMP. Her work and research is related to optimization of X-ray procedures, mainly interventional, and radiation protection of patients and staff. She cooperated on national radiology standards and has been devoted to education of students, physicians and other applicants. She is a member of AAPM and ESR, and also local societies.

Igor Lackovi? is Full Professor at the University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia. He received his Dipl.-Ing., M.Sc. and Ph.D. degrees from the University of Zagreb, all in Electrical Engineering. His main research interests lie in the field of biomedical signal processing and modeling with a special focus on electric field interaction with biological tissue, bioimpedance spectroscopy, dielectric properties of biological materials, and related instrumentation development. Dr Lackovi? is the president of Croatian Biomedical Engineering and Medical Physics Society. He is a member of the Administrative Council of the IFMBE, Senior member of the IEEE, member of the IEEE EMBS and member of the ISEBI. Currently, he serves as the editor of the IFMBE News. He has served as the Conference Chair of the 6th European Conference of the IFMBE, MBEC2014, Dubrovnik Croatia, 2014.
Dr. Ibbott is a Professor in the Department of Radiation Physics at The University of Texas MD Anderson Cancer Center. His research interests include advanced image-guided radiation therapy, and three-dimensional dosimetry. These two interests coincide with the development and installation at MD Anderson of a magnetic resonance image-guided radiation therapy (MR-IGRT) capability. The introduction of MRI guidance into radiation therapy offers the ability to base treatment delivery on the exquisite soft-tissue visualization of MRI, which promises to improve the confidence of targeting of many tumors in the abdomen and head & neck. The highly-conformal treatment plans that can be delivered by modern techniques demand advanced dose measurement capabilities, and recent 3D dosimetry techniques show promise. Dr. Ibbott's laboratory has been investigating a variety of gel- and solid plastic-based 3D dosimetry systems for their use in routine clinical dosimetry, remote audits, and dosimetry under circumstances that are challenging for conventional dosimeters. The presence of magnetic fields in MR-IGRT can affect the response of standard dosimeters in ways his lab is presently investigating. Dr. Ibbott's lab is also evaluating the use of 3D dosimeters for use with MR-IGRT, where their response is less likely to be influenced by the magnetic fields.


This book (vol. 1) presents the proceedings of the IUPESM World Congress on Biomedical Engineering and Medical Physics, a triennially organized joint meeting of medical physicists, biomedical engineers and adjoining health care professionals. Besides the purely scientific and technological topics, the 2018 Congress will also focus on other aspects of professional involvement in health care, such as education and training, accreditation and certification, health technology assessment and patient safety. The IUPESM meeting is an important forum for medical physicists and biomedical engineers in medicine and healthcare learn and share knowledge, and discuss the latest research outcomes and technological advancements as well as new ideas in both medical physics and biomedical engineering field.Chapter "e;Evaluation of the Impact of an International Master of Advanced Studies in Medical Physics"e; is available open access under a Creative Commons Attribution 3.0 IGO Licence via link.springer.com.

Lenka Lhotská, PhD, CEng, MIET, MIEEE, graduated as Master of Science in Electrical Engineering at the Czech Technical University in Prague (CVUT), Czech Republic. In 1989 she got her PhD degree in Cybernetics from CVUT. Currently she is head of the COGSYS Department (Cognitive Systems and Neurosciences) at the Czech Institute of Informatics, Robotics and Cybernetics and head of Department of Natural Sciences of the Faculty of Biomedical Engineering, CVUT. Her research focuses on following areas: Knowledge-based systems, data and knowledge representation, application of artificial intelligence methods to medicine, digital signal processing, machine learning, feature extraction and feature selection, semantic interoperability, mobile technologies in healthcare, electronic health record. She is chair of the Working Group Personal Portable Devices of European Federation for Medical Informatics, Member of the Council of the Czech Society for Biomedical Engineering and Medical Informatics, National representative in International Society for Telemedicine and eHealth (IsfTeH), National representative in International Federation for Medical and Biological Engineering (IFMBE), and Member of the Engineering Academy of the Czech Republic.Lucie Sukupova has been working as a clinical medical physicist in radiodiagnostics &interventional radiology at the Institute for Clinical and Experimental Medicine. She received her M.Sc. and Ph.D. in Radiological Physics from the Czech Technical University in Prague and a certification of Medical Physics Expert from EFOMP. Her work and research is related to optimization of X-ray procedures, mainly interventional, and radiation protection of patients and staff. She cooperated on national radiology standards and has been devoted to education of students, physicians and other applicants. She is a member of AAPM and ESR, and also local societies.Igor Lacković is Full Professor at the University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia. He received his Dipl.-Ing., M.Sc. and Ph.D. degrees from the University of Zagreb, all in Electrical Engineering. His main research interests lie in the field of biomedical signal processing and modeling with a special focus on electric field interaction with biological tissue, bioimpedance spectroscopy, dielectric properties of biological materials, and related instrumentation development. Dr Lacković is the president of Croatian Biomedical Engineering and Medical Physics Society. He is a member of the Administrative Council of the IFMBE, Senior member of the IEEE, member of the IEEE EMBS and member of the ISEBI. Currently, he serves as the editor of the IFMBE News. He has served as the Conference Chair of the 6th European Conference of the IFMBE, MBEC2014, Dubrovnik Croatia, 2014.Dr. Ibbott is a Professor in the Department of Radiation Physics at The University of Texas MD Anderson Cancer Center. His research interests include advanced image-guided radiation therapy, and three-dimensional dosimetry. These two interests coincide with the development and installation at MD Anderson of a magnetic resonance image-guided radiation therapy (MR-IGRT) capability. The introduction of MRI guidance into radiation therapy offers the ability to base treatment delivery on the exquisite soft-tissue visualization of MRI, which promises to improve the confidence of targeting of many tumors in the abdomen and head & neck. The highly-conformal treatment plans that can be delivered by modern techniques demand advanced dose measurement capabilities, and recent 3D dosimetry techniques show promise. Dr. Ibbott’s laboratory has been investigating a variety of gel- and solid plastic-based 3D dosimetry systems for their use in routine clinical dosimetry, remote audits, and dosimetry under circumstances that are challenging for conventional dosimeters. The presence of magnetic fields in MR-IGRT can affect the response of standard dosimeters in ways his lab is presently investigating. Dr. Ibbott’s lab is also evaluating the use of 3D dosimeters for use with MR-IGRT, where their response is less likely to be influenced by the magnetic fields.

Diagnostic Imaging.- Image Processing.- Information Technology in Healthcare.- Modelling and Simulation.- BME and MP Education, Training and Professional Development.- Patient Safety.- Accreditation and Certification.- Health Technology Assessment.- Biosignals Processing.- Biomechanics, Rehabilitation and Prosthetics.- Minimum Invasive Surgery, Robotics, Image Guided Therapies, Endoscopy.- Diagnostic and Therapeutic Instrumentation.- Micro- and Nanosystems, Active Implants, Biosensors.- Neuroengineering, Neural Systems.- Biomaterials, Cellular and Tissue Engineering, Artificial Organs.- Assistive Technologies.- Biological Effects of Electromagnetic Fields.- Clinical Engineering.- Radiation Oncology Physics and Systems.- Dosimetry and Radiation Protection.- Advanced Technologies in Cancer Research and Treatment.- Biological Effects of Ionizing Radiation.- Nuclear Medicine and Molecular Imaging.

Erscheint lt. Verlag 29.5.2018
Reihe/Serie IFMBE Proceedings
IFMBE Proceedings
Zusatzinfo XXIX, 894 p. 487 illus., 397 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Medizin / Pharmazie Pflege
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Technik Maschinenbau
Technik Medizintechnik
Schlagworte assistive technologies • biomaterials • Biomechanics, Rehabilitation and Prosthetics • biosensors • Biosignals Processing • BME and MP Education • Diagnostic and Therapeutic Instrumentation • diagnostic imaging • IFMBE • Image Guided Therapies • Image Processing • Information Technology in Healthcare • IUPESM • Minimum invasive surgery • Modelling and Simulation • Robotics
ISBN-10 981-10-9035-1 / 9811090351
ISBN-13 978-981-10-9035-6 / 9789811090356
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 42,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
CHF 29,30
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
CHF 42,20
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
CHF 31,65