Fusion Neutronics (eBook)
XX, 393 Seiten
Springer Singapore (Verlag)
978-981-10-5469-3 (ISBN)
This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research.
Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronic characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics. Further, it introduces readers to the unique principles and procedures of neutronics design, experimental methodologies and methodologies for fusion systems.
The book not only highlights the latest advances and trends in the field, but also draws on the experiences and skills collected in the author's more than 40 years of research. To make it more accessible and enhance its practical value, various representative examples are included to illustrate the application and efficiency of the methods, designs and experimental techniques discussed.
Prof. Yican Wu is the director general of Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences (CAS), the director of Key Laboratory of Neutronics and Radiation Safety, CAS, and the leader of FDS Team. He has been serving as the Executive Committee Chair of IEA ESEFP TCP and IAEA consultant. His research involves nuclear science and engineering, nuclear safety and other interdisciplinary research. He has published over 400 papers and received over 10 important awards including the National Natural Science Award and the Science and Technology Award of China Nuclear Energy Association.
This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research.Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronic characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics. Further, it introduces readers to the unique principles and procedures of neutronics design, experimental methodologies and methodologies for fusion systems. The book not only highlights the latest advances and trends in the field, but also draws on the experiences and skills collected in the author's more than 40 years of research. To make it more accessible and enhance its practical value, various representative examples are included to illustrate the application and efficiency of the methods, designs and experimental techniques discussed.
Prof. Yican Wu is the director general of Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences (CAS), the director of Key Laboratory of Neutronics and Radiation Safety, CAS, and the leader of FDS Team. He has been serving as the Executive Committee Chair of IEA ESEFP TCP and IAEA consultant. His research involves nuclear science and engineering, nuclear safety and other interdisciplinary research. He has published over 400 papers and received over 10 important awards including the National Natural Science Award and the Science and Technology Award of China Nuclear Energy Association.
Foreword I 5
Foreword II 5
Preface 10
Acknowledgements 12
Contents 13
1 Introduction 19
1.1 Fusion Neutrons 20
1.2 Fusion Facilities 22
1.2.1 Magnetic Confinement Fusion Facilities 22
1.2.1.1 Tokamaks 22
1.2.1.2 Stellarators 25
1.2.1.3 Reversed Field Pinches 25
1.2.1.4 Magnetic Mirrors 26
1.2.1.5 Z-Pinches 26
1.2.2 Inertial Confined Fusion Facilities 27
1.2.3 Other Fusion Facilities 28
1.3 Fusion Energy Development Programs 29
1.4 Fusion Neutronics 31
1.4.1 Neutronics Characteristics of Fusion Systems 31
1.4.2 Introduction to Fusion Neutronics 32
1.4.2.1 Neutronics Theories and Methodologies 32
1.4.2.2 Fusion Neutronics Designs 33
1.4.2.3 Fusion Neutronics Experiments 34
References 35
Neutronics Theories and Methodologies for Fusion 36
2 Neutron Transport Theory and Simulation 37
2.1 Interaction of Neutrons with Matter 37
2.2 Foundation of Neutron Transport Theory 40
2.2.1 Neutron Transport Equation 41
2.2.2 Fixed Source and Eigenvalue Problems 45
2.3 Neutron Transport Computational Methods 47
2.3.1 Monte Carlo Methods 47
2.3.1.1 Basic Principles 48
2.3.1.2 Estimation Methods for Physical Quantities 50
2.3.1.3 Monte Carlo Acceleration Method 52
2.3.2 Deterministic Methods 64
2.3.2.1 The Discrete Ordinates Method 65
2.3.2.2 The Method of Characteristics 68
2.3.2.3 The Spherical Harmonics Method 70
2.3.2.4 Acceleration Methods 72
2.4 Transport Simulation Codes 75
2.4.1 Monte Carlo Codes 75
2.4.1.1 SuperMC 75
2.4.1.2 MCNP 76
2.4.1.3 TRIPOLI 77
2.4.1.4 Serpent 77
2.4.1.5 Geant4 77
2.4.1.6 FLUKA 78
2.4.1.7 PHITS 78
2.4.2 Deterministic Codes 78
2.4.2.1 DOORS 78
2.4.2.2 ATTILA 79
References 79
3 Neutron-Induced Transmutation and Activation 81
3.1 Principles of Transmutation and Activation 81
3.1.1 Material Activation 82
3.1.2 Tritium Breeding 83
3.1.3 Fission Fuel Breeding and Depletion 84
3.1.4 Nuclear Waste Transmutation 84
3.2 Typical Parameters of Transmutation and Activation 87
3.2.1 Material Activation 87
3.2.2 Tritium Breeding 89
3.2.3 Fission Fuel Breeding and Depletion 89
3.2.3.1 Fission Fuel Breeding 89
3.2.3.2 Fission Fuel Depletion 89
3.2.4 Nuclear Waste Transmutation 90
3.3 Calculation Methods of Transmutation and Activation 91
3.3.1 Bateman Equation 92
3.3.2 Analytic Methods 93
3.3.3 Numerical Methods 96
3.3.3.1 Finite Difference Methods of Ordinary Differential Equations 96
3.3.3.2 Matrix Exponential Methods 99
3.4 Transmutation and Activation Simulation Codes 102
References 105
4 Neutron Irradiation and Material Damage 106
4.1 Mechanisms of Neutron Irradiation Damage 106
4.2 Displacement Damage 108
4.2.1 Primary Collisions 108
4.2.2 Cascade Collisions 109
4.2.3 Displacement Damage Calculations 110
4.2.3.1 Damage Dose 111
4.2.3.2 Energy Deposition 112
4.3 Neutron Irradiation Effects on the Microstructure and Properties of Materials 113
4.3.1 Irradiation Effects on Material Microstructure 113
4.3.2 Irradiation Effects on Material Properties 116
4.3.2.1 Irradiation Swelling 117
4.3.2.2 Mechanical Properties 118
4.3.2.3 Physical Properties 120
4.4 Research Methods of Fusion Neutron Irradiation Damage to Materials 122
4.4.1 Experimental Studies on Neutron Irradiation Damage 122
4.4.2 Numerical Simulations of Neutron Irradiation Damage 124
4.4.2.1 Codes for Displacement Damage Calculation 124
4.4.2.2 Multi-Scale Simulation of Irradiation Damage 125
References 127
5 Radiation Dosimetry and Biological Safety 129
5.1 Principles and Requirements of Radiological Protection 129
5.2 Radioactive Sources and Nuclide Migration 132
5.2.1 Radioactive Source Terms 132
5.2.2 Radionuclide Migration in Fusion Systems 133
5.2.3 Radionuclide Migration in the Environment 134
5.3 Radiation Dosimetry Calculations 139
5.3.1 Dosimetric Quantities in Radiological Protection 139
5.3.2 External Exposure Calculations 143
5.3.3 Internal Exposure Calculations 147
5.4 Biological Effects of Radiation 151
5.4.1 Principles of the Biological Effects of Radiation 151
5.4.2 Biological Effects of Tritium 152
5.4.3 Biological Effects of Neutrons 154
References 157
6 Fusion Nuclear Data Libraries 159
6.1 Introduction to Nuclear Data Libraries 159
6.1.1 Experimental Nuclear Data Libraries 160
6.1.2 Evaluated Nuclear Data Libraries 160
6.1.3 Application Nuclear Data Libraries 161
6.2 Transport Nuclear Data Libraries 162
6.2.1 Processing Methods for Transport Nuclear Data Libraries 162
6.2.1.1 Resonance Reconstruction 163
6.2.1.2 Doppler Broadening 165
6.2.1.3 Multi-group Processing 169
6.2.2 Typical Transport Nuclear Data Libraries 173
6.2.2.1 Hybrid Evaluated Nuclear Data Library—SuperMC/HENDL 173
6.2.2.2 Fusion Evaluated Nuclear Data Library—FENDL 174
6.3 Transmutation and Activation Nuclear Data Libraries 174
6.3.1 Activation Cross-section Libraries 175
6.3.1.1 Processing Method for Activation Cross-section Libraries 175
6.3.1.2 Typical Activation Cross-section Libraries 176
6.3.2 Decay Data Libraries 177
6.3.3 Fission Yields Data Libraries 177
6.4 Radiation Damage Nuclear Data Libraries 178
6.4.1 Processing Methods of Radiation Damage Nuclear Data Libraries 179
6.4.1.1 Gas Production Cross-sections 179
6.4.1.2 Displacement Damage Cross-sections 179
6.4.2 Typical Radiation Damage Nuclear Data Libraries 182
6.4.2.1 Radiation Damage Nuclear Data Library in SuperMC/HENDL 182
6.4.2.2 Radiation Damage Nuclear Data Library Provided in the NPRIM Code Package 182
6.4.2.3 Radiation Damage Nuclear Data Library Provided in the SPECTER Code Package 183
References 183
7 Comprehensive Neutronics Simulations 185
7.1 Framework of Comprehensive Simulation Systems 185
7.1.1 Main Simulation Objects 186
7.1.2 Key Issues 187
7.1.3 Typical System Architectures 188
7.2 Accurate Modeling 189
7.2.1 CSG Modeling 190
7.2.2 Facet Modeling 196
7.2.3 Mesh Modeling 197
7.2.4 Voxel-Based Modeling 198
7.3 Whole-Process and Multiphysics Coupling Neutronics Calculations 200
7.3.1 MC and Deterministic Coupling Calculations 201
7.3.2 Whole-Process Neutronics Calculations 205
7.3.3 Multiphysics Coupling Neutronics Calculations 206
7.4 Multidimensional Visualized Analyses and Virtual Simulations 208
7.4.1 Multidimensional Visualized Analyses 208
7.4.2 Virtual Simulations 211
7.5 Typical Simulation Systems 214
7.5.1 SuperMC 214
7.5.2 ISPC 217
References 218
Fusion Neutronics Design Principles 220
8 Neutronics Design of Fusion Experimental Reactors 221
8.1 Introduction to Fusion Experimental Reactors 221
8.2 Objectives of ITER Neutronics Design 224
8.3 Methods of ITER Neutronics Design 227
8.4 Neutronics Design of the ITER Tokamak 233
8.4.1 Test Blanket Modules 233
8.4.2 Shielding Blankets 235
8.4.3 Divertors 239
8.4.4 Ports and Port Plugs 241
8.4.5 Cooling Water Systems 244
8.4.6 Vacuum Vessel 246
8.4.7 Superconducting Magnets 249
8.4.8 Thermal Shield 251
8.5 Neutronics Design of ITER Buildings 253
8.5.1 Radiological Zoning 253
8.5.2 Shielding Design of the Buildings 254
8.6 Safety Analysis and Environment Impact Assessment of ITER 263
References 266
9 Neutronics Design Principles of DEMO Reactors and Fusion Power Reactors 268
9.1 Introduction to DEMO Reactors and FPRs 268
9.1.1 Principles of DEMO and FPRs 268
9.1.2 Features of FPRs 272
9.1.3 Conceptual Design of Typical FPRs 273
9.2 Neutronics Design of FPRs 275
9.2.1 Design Objectives 275
9.2.2 Design Methods 276
9.2.3 Examples of FPR Neutronics Design 281
References 293
10 Neutronics Design Principles of Fusion-Fission Hybrid Reactors 294
10.1 Introduction to Hybrid Reactors 294
10.1.1 Principles of Hybrid Reactors 294
10.1.2 Features of Hybrid Reactors 296
10.1.3 Typical Design Concepts 299
10.2 Neutronics Design of Hybrid Reactors 303
10.2.1 Neutronics Design Objectives 303
10.2.2 Neutronics Design Methods 304
10.2.3 Examples of Hybrid Reactor Neutronics Design 308
References 319
Fusion Neutronics Experiment Technologies 320
11 Experimental Methods of Fusion Neutronics 321
11.1 Characteristics of Fusion Neutronics Experiments 321
11.2 Fusion Neutron Detection Techniques 323
11.2.1 Principles of Neutron Detection 323
11.2.2 Measurements of Neutron Flux 326
11.2.3 Measurements of Neutron Energy Spectrum 333
11.3 Methods of Neutron Cross-section Measurements 342
11.3.1 Measurements of Total Cross-sections 342
11.3.2 Measurements of Differential Cross-sections 343
11.4 Methods of Various Macroscopic Integral Measurements 345
11.4.1 Measurements of Neutron Multiplication Factors 345
11.4.2 Measurements of Tritium Production Rates 346
11.4.3 Measurements of Nuclear Heat Deposition 348
11.4.4 Measurements of Transmission Probability Spectrum 349
11.4.5 Measurements of Neutron Activation Rates 349
11.4.6 Measurements of Radiation Dose 350
11.4.7 Measurements of Other Macroscopic Integrals 350
References 353
12 Experimental Facilities of Fusion Neutronics 355
12.1 Introduction to Neutron Sources 355
12.2 Accelerator-Based Fusion Neutron Sources 357
12.3 Fusion Reactor-Based Neutron Sources 363
12.4 Other Neutron Sources 367
References 373
13 Fusion Neutronics Experiments 374
13.1 Measurement and Validation Experiments for Nuclear Data 374
13.1.1 Experiments for Neutron Transport Cross-sections 375
13.1.2 Experiments for Neutron-Induced Transmutation and Activation Cross-sections 378
13.1.3 Experiments for Nuclear Decay and Dose 380
13.2 Validation Experiments for Neutronics Methods and Codes 380
13.2.1 Neutron Transport Code Validation 382
13.2.2 Neutron Transmutation and Activation Code Validation 384
13.2.3 Dose Calculation Method Validation 385
13.3 Validation Experiments for Fusion Nuclear Designs 387
13.3.1 Tritium Breeding Experiments 387
13.3.2 Shielding Experiments 388
13.3.3 Radiation Dose Experiments 392
13.3.4 Material Activation Experiments 393
13.3.5 Material Irradiation Experiments 395
13.3.6 Blanket Experiments for Fusion-Fission Hybrid Reactors 399
13.4 Prospects of Fusion Neutronics Experiments 399
References 401
Erscheint lt. Verlag | 16.8.2017 |
---|---|
Zusatzinfo | XX, 393 p. 192 illus., 110 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Atom- / Kern- / Molekularphysik |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Fusion Fission Hybrid Reactors • Fusion Power Reactors • Neutron Activation • Neutronic Design Principle • Neutronic Experimental Technologies • Neutronic Theories and Methodologies • Neutron Transport • Nuclear data • Radiation damage • radiation dosimetry • Radio-Ecological Impacts |
ISBN-10 | 981-10-5469-X / 981105469X |
ISBN-13 | 978-981-10-5469-3 / 9789811054693 |
Haben Sie eine Frage zum Produkt? |
Größe: 13,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich