EEG Signal Analysis and Classification (eBook)
XIII, 256 Seiten
Springer International Publishing (Verlag)
978-3-319-47653-7 (ISBN)
Electroencephalogram (EEG) and its background.- Significance of EEG signals in medical and health research.- Objectives and structures of the book.- Random sampling in the detection of epileptic EEG signals.- A novel clustering technique for the detection of epileptic seizures.- A statistical framework for classifying epileptic seizure from multi-category EEG signals.- Injecting principal component analysis with the OA scheme in the epileptic EEG signal classification.- Cross-correlation aided logistic regression model for the identification of motor imagery EEG signals in BCI applications.- Modified CC-LR Algorithm for identification of MI based EEG signals.- Improving prospective performance in the MI recognition: LS-SVM with tuning hyper parameters.- Comparative study: Motor area EEG and All-channels EEG.- Optimum allocation aided Naive Bayes based learning process for the detection of MI tasks.- Summary discussions on the methods, future directions and conclusions.
Erscheint lt. Verlag | 3.1.2017 |
---|---|
Reihe/Serie | Health Information Science | Health Information Science |
Zusatzinfo | XIII, 256 p. 96 illus. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Grafik / Design |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Medizin / Pharmazie | |
Technik ► Bauwesen | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Brain computer interface (BCI) • classification • Clustering technique (CT) • Cross-correlation (CC) technique • electroencephalogram (EEG) • Epileptic seizure • feature extraction • Kernal logistic regression (KLR) • k-NN • Least square supper vector machine (LS-SVM) • Logistic regression (LR) • Motor imagery (MI) • Multinomial logistic regression with a ridge estimator • Naive Bayes method • Optimum allocation sampling • Optimum allocation technique • Simple random sampling (SRS) • Support Vector Machine (SVM) |
ISBN-10 | 3-319-47653-X / 331947653X |
ISBN-13 | 978-3-319-47653-7 / 9783319476537 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich