Nicht aus der Schweiz? Besuchen Sie lehmanns.de

EEG Signal Analysis and Classification

Techniques and Applications
Buch | Hardcover
XIII, 256 Seiten
2017 | 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-47652-0 (ISBN)

Lese- und Medienproben

EEG Signal Analysis and Classification - Siuly Siuly, Yan Li, Yanchun Zhang
CHF 209,70 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book presents advanced methodologies in two areas related to electroencephalogram (EEG) signals: detection of epileptic seizures and identification of mental states in brain computer interface (BCI) systems. The proposed methods enable the extraction of this vital information from EEG signals in order to accurately detect abnormalities revealed by the EEG. New methods will relieve the time-consuming and error-prone practices that are currently in use. 
Common signal processing methodologies include wavelet transformation and Fourier transformation, but these methods are not capable of managing the size of EEG data. Addressing the issue, this book examines new EEG signal analysis approaches with a combination of statistical techniques (e.g. random sampling, optimum allocation) and machine learning methods. The developed methods provide better results than the existing methods. The book also offers applications of the developedmethodologies that have been tested on several real-time benchmark databases.
This book concludes with thoughts on the future of the field and anticipated research challenges. It gives new direction to the field of analysis and classification of EEG signals through these more efficient methodologies. Researchers and experts will benefit from its suggested improvements to the current computer-aided based diagnostic systems for the precise analysis and management of EEG signals.



Electroencephalogram (EEG) and its background.- Significance of EEG signals in medical and health research.- Objectives and structures of the book.- Random sampling in the detection of epileptic EEG signals.- A novel clustering technique for the detection of epileptic seizures.- A statistical framework for classifying epileptic seizure from multi-category EEG signals.- Injecting principal component analysis with the OA scheme in the epileptic EEG signal classification.- Cross-correlation aided logistic regression model for the identification of motor imagery EEG signals in BCI applications.- Modified CC-LR Algorithm for identification of MI based EEG signals.- Improving prospective performance in the MI recognition: LS-SVM with tuning hyper parameters.- Comparative study: Motor area EEG and All-channels EEG.- Optimum allocation aided Naive Bayes based learning process for the detection of MI tasks.- Summary discussions on the methods, future directions and conclusions.

Erscheinungsdatum
Reihe/Serie Health Information Science
Zusatzinfo XIII, 256 p. 96 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte Artificial Intelligence • artificial intelligence (incl. robotics) • biomedical engineering • Brain computer interface (BCI) • classification • Clustering technique (CT) • Computer Science • computer vision • Cross-correlation (CC) technique • electroencephalogram (EEG) • Engineering: general • Epileptic seizure • feature extraction • health and safety aspects of IT • Health Informatics • Image Processing • image processing and computer vision • Imaging systems and technology • Information Retrieval • information systems applications (incl. internet) • Internet Searching • Kernal logistic regression (KLR) • k-NN • Least square supper vector machine (LS-SVM) • Logistic regression (LR) • Motor imagery (MI) • Multinomial logistic regression with a ridge estim • Multinomial logistic regression with a ridge estimator • Naive Bayes method • Optimum allocation sampling • Optimum allocation technique • Robotics • Signal, Image and Speech Processing • Signal Processing • Simple random sampling (SRS) • Support Vector Machine (SVM)
ISBN-10 3-319-47652-1 / 3319476521
ISBN-13 978-3-319-47652-0 / 9783319476520
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Wegweiser für Elektrofachkräfte

von Gerhard Kiefer; Herbert Schmolke; Karsten Callondann

Buch | Hardcover (2024)
VDE VERLAG
CHF 67,20