Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Advances in Imaging and Electron Physics

Advances in Imaging and Electron Physics (eBook)

eBook Download: PDF | EPUB
2015 | 1. Auflage
342 Seiten
Elsevier Science (Verlag)
978-0-12-802519-2 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
175,00 inkl. MwSt
(CHF 169,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. - Contains contributions from leading authorities on the subject matter - Informs and updates on all the latest developments in the field of imaging and electron physics - Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electron, and ion emission with a valuable resource - Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science. and digital image processing
Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. - Contains contributions from leading authorities on the subject matter- Informs and updates on all the latest developments in the field of imaging and electron physics- Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electron, and ion emission with a valuable resource- Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science. and digital image processing

Chapter One

Femtosecond Electron Imaging and Spectroscopy


Proceedings of the Conference on Femtosecond Electron Imaging and Spectroscopy, FEIS 2013, December 9–12, 2013, Key West, FL, USA


Martin Berz; Philip M. Duxbury; Kyoko Makino1; Chong-Yu Ruan    Michigan State University, East Lansing MI 48824, USA
1 Corresponding author: email address: makino@msu.edu

Abstract


We are witnessing tremendous opportunities in ultrafast sciences with the development of extremely bright radiation sources to investigate the structure and spectroscopy of matter with atomistic space and femtosecond time resolution. While generally a strong focus has been on X-ray sources—notably free electron laser (FEL) sources—the use of femtosecond electron pulses has also shown enormous promise in the last decade, especially in the investigation of materials from the sub-micrometer down to the angstrom scale, facilitated by the high sensitivity of electron scattering and the relative ease in designing electron optics for imaging and diffraction from nanomaterials. Moreover, important innovations have been achieved by incorporating ultrafast photoemission sources into various electron microscope setups. Most recently, a new trend of integrating the FEL high-brightness electron beam concept into the ultrafast electron diffraction and microscope system design is likely to open up new prospects and applications of femtosecond diffraction, imaging, and spectroscopy with high throughput.

The conference on Femtosecond Electron Imaging and Spectroscopy (FEIS 2013) was held on December 9–12, 2013 in Key West, Florida. FEIS 2013 built on the potential synergy between related technology developments and various emerging scientific opportunities and brought together leaders engaged in cutting-edge development of high-brightness electron and X-ray beam systems and their applications to frontier science problems. FEIS 2013, the first in this series, was organized with the goal of initiating conversation between different communities with the following objectives in mind: (1) to review the current state-of-the-art development and open issues of ultrafast electron imaging technologies; (2) to discuss emerging scientific opportunities enabled by ultrafast imaging and spectroscopy; (3) to identify the key technical challenges in the design and applications of ultrafast electron imaging systems; and (4) to forge cross-fertilization between the electron microscopy, accelerator and beam physics, and ultrafast communities, and to have experimentalists and theorists address common challenges and promote synergistic developments.

Keywords

Electron microscope

UEM

TEM

STEM

space charge

ultrafast

femtosecond

FEL

RF Gun

imaging

diffraction

1 Introduction


We are witnessing tremendous opportunities in ultrafast sciences with the development of extremely bright radiation sources to investigate the structure and spectroscopy of matter with atomistic space and femtosecond time resolution. While generally a strong focus has been on X-ray sources—notably free electron laser (FEL) sources—the use of femtosecond electron pulses has also shown enormous promise in the last decade, especially in the investigation of materials from the sub-micrometer down to the angstrom scale, facilitated by the high sensitivity of electron scattering and the relative ease in designing electron optics for imaging and diffraction from nanomaterials. Moreover, important innovations have been achieved by incorporating ultrafast photoemission sources into various electron microscope setups. Most recently, a new trend of integrating the FEL high-brightness electron beam concept into the ultrafast electron diffraction and microscope system design is likely to open up new prospects and applications of femtosecond diffraction, imaging, and spectroscopy with high throughput.

The conference on Femtosecond Electron Imaging and Spectroscopy (FEIS 2013) was held on December 9–12, 2013 in Key West, Florida. FEIS 2013 built on the potential synergy between related technology developments and various emerging scientific opportunities and brought together leaders engaged in cutting-edge development of high-brightness electron and X-ray beam systems and their applications to frontier science problems. FEIS 2013, the first in this series, was organized with the goal of initiating conversation between different communities with the following objectives in mind: (1) to review the current state-of-the-art development and open issues of ultrafast electron imaging technologies; (2) to discuss emerging scientific opportunities enabled by ultrafast imaging and spectroscopy; (3) to identify the key technical challenges in the design and applications of ultrafast electron imaging systems; and (4) to forge cross-fertilization between the electron microscopy, accelerator and beam physics, and ultrafast communities, and to have experimentalists and theorists address common challenges and promote synergistic developments.

1.1 Synopsis of FEIS 2013


1.1.1 Current Status of Ultrafast Imaging and Spectroscopy

Functional imaging and spectroscopy at the local level with atomic, electronic, and magnetic sensitivity are highly desirable for understanding structure-property relationships at the nanometer-length scale and in complex materials. Y. Zhu (page 26) presented an overview of the broad scientific opportunities accessible by utilizing high-energy electrons, including atomic imaging, quantitative electron diffraction, energy-loss spectroscopy, and Lorentz and in situ microscopy, with an emphasis on understanding the materials’ functionality through correlative studies. A community that incorporates electronic, magnetic, thermal, and optical excitations into conventional high-resolution electron microscopes for in situ imaging and spectroscopy studies is rapidly developing. In particular, optical excitations can now routinely be employed on the femtosecond timescale, presenting an opportunity for unique photonic control and potentially imaging at high temporal resolution. Ultrafast electron imaging and spectroscopy represents a natural next step of modern electron microscope development.

To form a diffraction pattern or image, typically 105 to 107 electrons are required. In time-resolved electron microscopy, diffraction, and spectroscopy systems, the electron sources are triggered by pulsed lasers, so the electron beams are delivered in discrete bunches, rather than a steady, diluted stream. So-called space charge effects emerge due to the strong electron-electron interaction within a single photoelectron bunch, which may manifest itself in different forms (i.e., virtual cathode, defocusing, and stochastic blur, as discussed later). Several active technologies cleverly circumvent space charge effects and have achieved significant improvements in temporal resolution using electron microscopy, diffraction, and spectroscopy. G. H. Campbell (page 15) presented the dynamic transmission electron microscope (DTEM) project at Lawrence Livermore National Laboratory using the single-shot approach. By initiating intense photoelectron pulses using a 10-ns laser, the average distance between electrons, even at the 108 electron per pulse level, is more than 100 μm apart, suffering nearly no space charge effect except at the acceleration stage and near the focal plane. Single-shot imaging of microstructure formation, including the kinetics of nucleation and phase transitions in semiconductors, phase change materials, and intermetallic compounds at combined ~ 10 ns–10 nm spatiotemporal resolution, have been achieved using the DTEM.

In contrast, by operating at a high repetition rate (~ 100 MHz), as presented by S. T. Park (page 21), near-single-electron-pulse ultrafast electron microscopes (UEMs) developed at California Institute of Technology are used to study highly reproducible site-specific events, such as dynamical modes of nanomechanical systems and surface plasmons. The fs single-electron pulses, initiated on a LaB6 filament, are fully compatible with the existing electron optical system in a TEM, largely preserving its high spatial resolution and achieving in practical implementations an impressive sub-ps-nm resolution in a stroboscopic setup, where hundreds of thousands or more diffraction data sets are collected at each delay time. The concurrence of ultrashort electron probing and fs laser excitation also enables a new modality of imaging, termed photon-induced near field electron microscopy (PINEM), that has been used to map the optically driven charge density distribution of nanoparticle plasmons. The mechanism and implications of such studies were discussed by S. T. Park's and in the talk by B. Barwick's (page 14). Both approaches are operated by modifying a conventional 100–200 keV TEM, maintaining the capability to retrieve local information.

So far, the most widely employed fs imaging protocol is the diffraction mode. This ultrafast electron diffraction (UED) method initiated the field of electron-based ultrafast imaging; it was introduced in the 1990s first in gas-phase studies of chemical reactions and nonequilibrium molecular dynamics, not long after the development of the largely optical spectroscopy–based fs-chemistry. The timely development of single-electron-sensitive CCDs equipped with pixilated electron amplification and Ti-Sapphire amplified laser...

Erscheint lt. Verlag 21.8.2015
Mitarbeit Herausgeber (Serie): Peter W. Hawkes
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Mathematik / Informatik Informatik Theorie / Studium
Naturwissenschaften Physik / Astronomie Angewandte Physik
Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Elektrodynamik
Technik Elektrotechnik / Energietechnik
ISBN-10 0-12-802519-0 / 0128025190
ISBN-13 978-0-12-802519-2 / 9780128025192
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 20,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 17,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
CHF 49,20
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
CHF 42,20
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
CHF 31,65