Optimal Interconnection Trees in the Plane (eBook)
XVII, 344 Seiten
Springer International Publishing (Verlag)
978-3-319-13915-9 (ISBN)
Marcus Brazil is Associate Professor and Reader at the Melbourne School of Engineering, The University of Melbourne, with a background in pure mathematics. He has worked on Steiner trees and network optimization problems for about 18 years, and has written more than 60 papers in this area, both on the theory of optimal network design and on industrial applications to Wireless Sensor Networks, Telecommunications, VLSI Physical Design, and Underground Mining Planning.Martin Zachariasen is Head of Department and Professor at the Department of Computer Science, University of Copenhagen. He has worked on heuristics and exact methods for classical NP-hard problems, such as the geometric Steiner Tree Problem, as well as other optimization problems. His general research interests are in experimental algorithmics and computational combinatorial optimization, in particular related to VLSI design. As well as writing more than 40 papers on these topics, he is one of the developers of GeoSteiner, which is by far the most efficient software for solving a range of geometric Steiner tree problems.
Preface.- 1 Euclidean and Minkowski Steiner Trees.- 1.2 Algorithms for a given Steiner topology.- 1.3 Global properties of minimum Steiner trees.- 1.4 GeoSteiner algorithm.- 1.5 Efficient constructions for special terminal sets.- 1.6 Steiner trees in Minkowski planes.- 1.7 Applications and extensions.- 2 Fixed Orientation Steiner Trees.- 2.1 Fixed orientation networks.- 2.2 Local properties for Steiner points.- 2.3 Local properties for full components.- 2.4 Algorithms for a given topology.- 2.5 Global properties of minimum Steiner trees.- 2.6 GeoSteiner algorithm.- 2.7 Applications and extensions.- 3 Rectilinear Steiner Trees.- 3.1 Local properties for Steiner points and full components.- 3.2 Global properties for minimum Steiner trees.- 3.3 GeoSteiner algorithm.- 3.4 FLUTE algorithm.- 3.5 Efficient constructions for special terminal sets.- 3.6 Applications and extensions.- 4 Steiner Trees with Other Costs and Constraints.- 4.1 The gradient-constrained Steiner tree problem.- 4.2 Obstacle-avoiding Steiner trees.- 4.3 Bottleneck and general k-Steiner tree problems.- 4.4 Trees Minimizing Flow Costs.- 4.5 Related topics.- 5 Steiner Trees in Graphs and Hypergraphs.- 5.1 Steiner trees in graphs.- 5.2 Minimum spanning trees in hypergraphs.- 5.3 Steiner trees in hypergraphs.- A Appendix.
Erscheint lt. Verlag | 13.4.2015 |
---|---|
Reihe/Serie | Algorithms and Combinatorics |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Mathematik / Informatik ► Mathematik | |
Technik | |
Schlagworte | algorithms • combinatorics • Computational Geometry • Network Optimization • Steiner trees |
ISBN-10 | 3-319-13915-0 / 3319139150 |
ISBN-13 | 978-3-319-13915-9 / 9783319139159 |
Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich