Applications of Ionic Liquids in Polymer Science and Technology (eBook)
XI, 387 Seiten
Springer Berlin (Verlag)
978-3-662-44903-5 (ISBN)
Contents 6
About the Editor 8
Contributors 10
1 Ionic Liquids as Polymer Additives 13
Introduction 14
Polymer Electrolytes 15
Lubricants 16
Plasticizers 17
Porous Polymers and Foams 19
Organic Polymers Supporting ILs 20
Supramolecular Polymers 20
Surfactant Agents 21
Ionic Liquids: Surfactant Agents of Layered Silicates 21
IL-Treated Layered Silicates for Polymer Nanocomposites 23
Polyolefin/MMT-IL Nanocomposites 24
PVDF/MMT-IL Nanocomposites 24
Polystyrene/MMT-IL Nanocomposites 25
Conclusions 26
References 26
2 Deep Eutectic Solvents Playing Multiple Roles in the Synthesis of Porous Carbon Materials 34
Introduction 14
Use of DESs in the Synthesis of Porous Carbon Materials 15
Application of Porous Carbon Materials 16
As Electrodes in Supercapacitors 17
As CO2 Adsorbents 19
Conclusions 20
References 26
3 Poly(Ionic Liquid)s as Ionic Liquid-Based Innovative Polyelectrolytes 57
Introduction 14
Chemistry of Poly(Ionic Liquid)s 15
Chemical Structure of Ionic Liquid Monomers 16
Polymerizations of IL Monomers 17
Straightforward Polymerization of IL Monomers 19
Conventional Free Radical Polymerization 20
Controlled/Living Radical Polymerization 20
Other Polymerizations 21
PILs by Polymer Modifications 21
Versatile Applications in Materials Science 23
Solid Ion Conductors 24
Dispersants 24
Sorbents and Separation 25
Carbon Materials 26
Catalysis 70
Other Applications 72
Conclusion 72
Acknowledgments 72
References 26
4 Imidazolium-Based Poly(Ionic Liquid) Block Copolymers 78
Introduction 14
Synthetic Developments to PIL BCPs 15
Reversible Addition Fragmentation Chain Transfer (RAFT) 16
Atom Transfer Radical Polymerization (ATRP) 17
Nitroxide-Mediated Polymerization (NMP) 19
Cobalt-Mediated Radical Polymerization (CMRP) 20
Ring-Opening Metathesis Polymerization (ROMP) 20
Chemical Modification of Preformed Block Copolymers 21
Self-assembly in Solution 21
Self-assembly at the Solid State and Related Transport Properties 23
Potential Applications of PIL BCPs 24
Energy Conversion Devices 24
PIL BCPs for Gas Separation 25
As Precursors for Nanostructured Carbon 26
Conclusion 70
Acknowledgments 72
References 26
5 Ionic Liquids and Polymeric Ionic Liquids as Stimuli-Responsive Functional Materials 112
Introduction 14
Association Structures 15
Anion Recognition and Sensing 16
Gels 17
Other Applications 19
Outlook 20
References 26
6 Ionic Liquid and Cellulose Technologies: Dissolution, Modification and Composite Preparation 144
Cellulose and Conventional Processing Technologies 14
Ionic Liquids and Cellulose Dissolution 15
Cellulose Dissolution in Ionic Liquids 16
Dissolution of Other Polysaccharides in Ionic Liquids 17
Chemical Modification of Cellulose in Ionic Liquids 19
Cellulose Composites 20
Polymerized Ionic Liquid-Cellulose Composites 20
Cellulose Based Ion Gels 21
Cellulosic Electrospun Fibers from Ionic Liquids 21
Outlook 23
References 26
7 Ionic Liquids and Polymeric Ionic Liquids in Analytical Environmental Applications 162
Introduction 14
Application of ILs and PILs in Microextraction Techniques for Environmental Analysis 15
Single-Drop Microextraction (SDME) 16
Extraction of Volatile Organic Compounds (VOCs) 17
Extraction of Chlorobenzenes 19
Extraction of Amines and Sulfonamides 20
Extraction of Phenols 20
Extraction of Polycyclic Aromatic Hydrocarbons (PAHs) 21
Extraction of Metal Ions and Organometallic Compounds 21
Extraction of Other Types of Analytes 23
Hollow Fiber Membrane Liquid-Phase Microextraction (HF-LPME) 24
Dispersive Liquid-Liquid Microextraction (DLLME) 24
Extraction of Pesticides 25
Extraction of Aromatic Compounds 26
Extraction of Pharmaceutical Compounds 70
Extraction of Metal Ions 72
Extraction of Other Types of Analytes 72
Solid-Phase Microextraction (SPME) 185
Extraction of VOCs 190
Extraction of Pesticides 191
Extraction of PAHs and Other Aromatic Compounds 192
Extraction of Other Types of Analytes 194
IL- and PIL-Based GC Stationary Phases Designed for Environmental Analysis 195
Application of IL/PIL-Based GC Stationary Phases in Single-Dimensional GC 195
Application of Homemade IL/PIL-Based GC Stationary Phases in Environmental Analysis 196
Application of Commercial IL Stationary Phases in Environmental Analysis 196
Application of IL/PIL-Based GC Stationary Phases for Two-Dimensional GC 197
Application of the IL/PIL-Based 2D GC Stationary Phases in Environmental Analysis 197
Conclusions 199
References 26
8 Ionic Liquids and Polymers in Energy 208
Introduction 14
Ionic Liquids as Electrolytes in Energy Storage and Production 15
Li-Ion Batteries 16
Supercapacitors 17
Actuators 19
Fuel Cells 20
Dye-Sensitized Solar Cells (DSSCs) 20
Ionic Liquid-Based Polymer Electrolytes 21
Preparation Methods 21
Families of Matrix Polymers 23
Application of IL-Polymer Electrolytes in Energy Storage 24
Li-ion Batteries 24
Lithium/Sulfur Batteries 25
Lithium/Air Batteries 26
Supercapacitors 70
Actuators 72
Application of IL-Polymer Electrolytes in Energy Production 72
Proton Exchange Membrane Fuel Cells (PEMFCs) 185
Alkaline Polymer Electrolyte Fuel Cells (APEMFCs) 190
Dye-Sensitized Solar Cells 191
Summary 192
References 26
9 Polymeric Imidazoles and Imidazoliums in Nanomedicine: Comparison to Ammoniums and Phosphoniums 239
Introduction 14
Ammonium- and Phosphonium-Containing Macromolecules 15
Structural Differences of Ammonium and Phosphonium Cations 16
Thermal Stability and Base Stability 17
Antimicrobials 19
Nonviral Nucleic Acid Delivery 20
Macromolecules from Vinyl Imidazole Monomers 20
Macromolecules from 1-Vinylimidazole 21
Application in Metal Chelation 21
Synthetic Enzymes 23
Biological Applications of 1-Vinylimidazole-Containing Macromolecules 24
Controlled Radical Polymerization 24
Macromolecules Containing 4-Vinylimidazole 25
Macromolecules Containing 2-Vinylimidazole 26
Other Cations 70
Conclusions 72
Acknowledgments 72
References 26
10 Poly(ionic liquid)s: Designing CO2 Separation Membranes 275
Motivation 14
Contextualization 15
Membrane Gas Separation 16
Permeability, Diffusivity, and Solubility 17
Selectivity 19
Separation Performance 20
CO2 Separation Membranes Based on Poly(ionic liquid)s 20
Neat PIL Membranes 21
PIL/IL Composite Membranes 21
PIL Copolymer Membranes 23
PIL/IL/Zeolite Mixed Matrix Membranes 24
Outlook 24
Acknowledgments 72
References 26
11 Conducting IPNs and Ionic Liquids: Applications to Electroactive Polymer Devices 304
Introduction 14
Synthesis of Interpenetrating Networks as Solid Polymer Electrolyte 15
Introduction 16
PEO/Polybutadiene IPNs as SPE 17
PEO/NBR IPNs as SPE 19
Other IPNs as SPE 20
Conclusion 20
Synthesis of Conducting IPNs to Electroactive Materials 21
The Chemical Synthesis Route 21
The Electrochemical Synthesis Route 23
PEDOT-Based IPNs with Electrochromic or Electroreflective Properties 24
Introduction 24
C-IPN-Based Electrochromic Devices 25
Electroreflective Device Based on C-IPN 26
Actuator Devices 70
Actuation Mechanism 72
Robust C-IPN Actuator Devices 72
High-Speed C-IPN Actuators 185
C-IPN-Based Microactuator 190
Conclusion 191
References 26
12 Chapter Poly(Ionic Liquid)s and Nanoobjects 329
Introduction 14
Use of PILs in Nanotechnology 15
PILs and Nanoobjects 16
Carbonaceous Nanoobjects 17
Carbon Nanotubes (CNTs) 19
Dispersants 20
Conductive Polymers 20
Biosensors 21
Lubricants 21
Membrane Actuators 23
Graphene 24
Dispersants 24
Conductive Polymers 25
Biosensors 26
Electrodes 70
Stimuli Responsive Materials 72
Metal and Metal-oxide Nanoobjects 72
Coatings 185
Catalysis 190
Stimuli Responsive Materials 191
Dye-sensitized Solar Cells 192
Template 194
Miscellaneous 195
Mixtures of Carbonaceous and Metallic Nanoobjects 195
Catalysis 196
Biosensors 196
Lithium Ion Batteries 197
Conclusions and Future Prospects 197
References 26
13 Ionic Liquids as Solvents and/or Catalysts in Polymerization 360
Introduction 14
Radical Polymerization in ILs 15
Ionic Polymerization in ILs 16
Cationic Polymerization in ILs 17
Anionic Polymerization in ILs 19
Transition-Metal-Catalyzed Polymerization in ILs 20
Polycondensation in ILs 20
Enzymatic Polymerization in ILs 21
Ionic Liquids as Catalysts for Polymerization 21
Conclusion 23
References 26
Erscheint lt. Verlag | 8.4.2015 |
---|---|
Zusatzinfo | XI, 387 p. 119 illus., 77 illus. in color. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Atom- / Kern- / Molekularphysik |
Technik | |
Schlagworte | Antistatic agent • Electrochemical application • Functional polymer • ionic liquid • Modification reaction • Plasticizer • Polymer electrolyte • Polymeric ionic liquid • polymer recycling • polymer synthesis • Speciality solvent |
ISBN-10 | 3-662-44903-X / 366244903X |
ISBN-13 | 978-3-662-44903-5 / 9783662449035 |
Haben Sie eine Frage zum Produkt? |
Größe: 12,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich