Nutritional supplement research concerning brain health and neurological disease is becoming an important focus. While nutritional supplements are very popular for general health and well being, the effectiveness of common supplements and their impact on general brain health and for the treatment or prevention of neurological disease is not clearly understood. This comprehensive introduction to bioactive nutraceuticals for brain and neurological provides a foundation review for research neuroscientists, clinical neurologists, pharmacology researchers and nutrition scientists on what we know now about these supplements and the brain and where focused research is still necessary. - Foundational review content covering nutrition and brain and neurological health- Reviews known nutritional supplements and impact on brain and neurological health- Comprehensive coverage ideal for research scientists and clinical practitioners
Front Cover 1
BIOACTIVE NUTRACEUTICALS AND DIETARY SUPPLEMENTS IN NEUROLOGICAL AND BRAIN DISEASE 4
Copyright 5
Contents 6
Preface 14
About the Editors 16
Contributors 18
Acknowledgments 22
SECTION I -
24
Chapter 1 - Anti-Inflammatory Properties of Botanical Extracts Contribute to Their Protective Effects in Brain Edema in Cerebral Ischemia 26
INTRODUCTION 26
ROLE OF PROINFLAMMATORY PROTEINS IN BRAIN EDEMA IN ISCHEMIC INJURY 27
THE ROLE OF BOTANICAL EXTRACTS IN ATTENUATING BRAIN EDEMA AND CELL SWELLING IN ISCHEMIA 28
THE ROLE OF BOTANICAL EXTRACTS IN REDUCING INFLAMMATION IN INJURY 30
CONCLUSION 30
CONFLICT OF INTEREST STATEMENT 30
Acknowledgments 34
References 34
Chapter 2 - Blueberry Polyphenols and Neuroprotection 40
INTRODUCTION 40
BLUEBERRY POLYPHENOLS 40
NEURODEGENERATION: MECHANISMS AND IMPLICATIONS FOR BRAIN PERFORMANCE 42
NEUROPROTECTIVE EFFECTS OF BLUEBERRY POLYPHENOLS 43
CONCLUSIONS 48
References 48
Chapter 3 - Neuropharmacology Effects of Saffron (Crocus sativus) and Its Active Constituents 52
INTRODUCTION 52
ANIMAL STUDIES 54
CLINICAL STUDIES 59
CONCLUSION 59
References 59
Chapter 4 - Lutein, Brain, and Neurological Functions 64
ADULTS AND COGNITIVE FUNCTION 65
EYE–BRAIN CONNECTION 65
CAROTENOIDS IN EYE AND BRAIN 65
EARLY LIFE PERIOD 66
INFLUENCE OF CAROTENOIDS ON BRAIN FUNCTIONS 67
LUTEIN AND COGNITIVE FUNCTION 68
LUTEIN AND PARKINSON’S DISEASE 68
LUTEIN AND HUNTINGTON’S DISEASE 69
CONCLUSION 69
References 69
Chapter 5 - Bioactive Nutrients for Brain Health: An Overview 72
An Overview 72
DIET AND COGNITIVE FUNCTION 74
References 77
Chapter 6 - Using Paullinia cupana (Guarana) to Treat Fatigue and Other Symptoms of Cancer and Cancer Treatment 80
INTRODUCTION 80
PAULLINIA CUPANA (GUARANA) 80
CANCER-RELATED FATIGUE 81
THE USE OF GUARANA FOR CRF TREATMENT 82
MECHANISM OF ACTION OF GUARANA IN PATIENTS WITH CRF 83
PRELIMINARY DATA ON THE DRY GUARANA EXTRACT FOR TERMINAL CANCER PATIENTS WITH HISTORY OF WEIGHT LOSS (TUMOR CACHEXIA) 83
PRELIMINARY DATA ON DRY GUARANA EXTRACT FOR TREATMENT OF HOT FLASHES IN BREAST CANCER SURVIVORS 85
References 86
Chapter 7 - Polyphenols, Nerve Growth Factor, Brain-Derived Neurotrophic Factor, and the Brain 88
THE BRAIN 88
NEUROTROPHINS 88
POLYPHENOLS 89
POLYPHENOLS AND THE BRAIN 90
POLYPHENOLS AND NEUROTROPHINS 91
CONCLUSIONS 92
DISCLOSURE 92
References 92
Chapter 8 - The Antiaggregative, Antiamyloid Properties of Bioactive Polyphenols in the Treatment of Alzheimer’s Disease 96
INTRODUCTION 96
(-) EPIGALLOCATECHIN-3-GALLATE 97
CURCUMIN 97
RESVERATROL 98
CONCLUSION 98
References 98
Chapter 9 - Rhinacanthus Nasutus Extract as a Neuroprotectant 100
RHINACANTHUS NASUTUS PROPERTIES AND USE IN TRADITIONAL MEDICINE 100
RHINACANTHUS NASUTUS AND ITS EMERGING POTENTIAL ROLE AS A NEUROPROTECTANT 103
RHINACANTHUS NASUTUS, IMMUNE RESPONSE, AND NEUROPROTECTION 104
References 106
SECTION II - ROLE OF DIETS, COMPLEMENTARY,
108
Chapter 10 - Nutraceuticals, Dietary Supplements, and Functional Foods as Alternatives for the Relief of Neuropathic Pain 110
NUTRACEUTICALS AND FOOD SUPPLEMENTS AND NEUROPATHIC PAIN TREATMENT 112
CONCLUSION 114
References 114
Chapter 11 - The Therapeutic Activities of Selected Scrophulariaceae and Buddlejaceae Species and Their Secondary Metabolites Against Neurodegenerative Diseases 118
INTRODUCTION 118
VERBASCUM SPECIES (MULLEIN) AND THEIR THERAPEUTIC ACTIVITIES AGAINST NEURODEGENERATIVE DISEASES 121
SCROPHULARIA SPECIES (FIGWORT) AND THEIR THERAPEUTIC ACTIVITIES AGAINST NEURODEGENERATIVE DISEASES 123
BUDDLEJA SPECIES (BUTTERFLY BUSH) AND THEIR THERAPEUTIC ACTIVITIES AGAINST NEURODEGENERATIVE DISEASES 126
SECONDARY METABOLITES AND THEIR THERAPEUTIC ACTIVITIES AGAINST NEURODEGENERATIVE DISEASES 129
CONCLUSION 132
References 132
Chapter 12 - Ginkgo biloba Extracts in Neurological Disorders Therapy: Clinical Trials 136
Clinical Trials 136
INTRODUCTION 136
MEDICAL USES 137
DOSAGE AND DURATION 138
NORMAL COGNITIVE FUNCTIONING 138
AGE-RELATED COGNITIVE IMPAIRMENT 138
AGE-RELATED DEMENTIA AND ALZHEIMER’S DISEASE 139
DEMENTIA AND ALZHEIMER’S DISEASE 141
MULTIPLE SCLEROSIS 143
TARDIVE DYSKINESIA 143
META-ANALYSIS AND SYSTEMATIC REVIEWS OF GINKGO CLINICAL TRIALS 144
SIDE EFFECTS AND QUALITY ISSUES OF EGB 761® 144
EXPOSURE TO GINKGO LEAF EXTRACTS IN CLINICAL STUDIES 145
CONCLUSION 145
References 146
Chapter 13 - The Ketogenic Diet for the Adjuvant Treatment of Malignant Brain Tumors 148
INTRODUCTION 148
TUMOR METABOLISM 148
THE KETOGENIC DIET 149
MECHANISMS OF ACTION 150
CASE STUDIES AND CLINICAL TRIALS 154
IMPLEMENTATION OF THE KD 154
CONCLUSIONS 155
References 156
Chapter 14 - Reduction is the New Youth: The Effect of Polyphenols on Brain Aging and Diseases 160
The Effect of Polyphenols on Brain Aging and Diseases 160
CONCLUSION 162
References 163
Chapter 15 - Natural Sleep Aids and Polyphenols as Treatments for Insomnia 164
INTRODUCTION 164
HERBAL SUPPLEMENTS FOR TREATING INSOMNIA 165
HYPNOTIC EFFECTS OF TERRESTRIAL PLANT POLYPHENOLS 166
HYPNOTIC EFFECTS OF MARINE PLANT POLYPHENOLS 170
CONCLUSION 172
References 172
Chapter 16 - The Effects of Trace Element Deficiencies on Neurological Disease and Treatment with Trace Element Support 176
INTRODUCTION 176
ZINC DEFICIENCY, NEUROLOGICAL DISORDERS, AND ZINC SUPPLEMENT 177
NEUROLOGICAL DISEASES AND MG SUPPLEMENT 178
SELENIUM AND NEUROLOGICAL DISEASES 178
IRON DEFICIENCY AND BRAIN DISEASES 179
COPPER DEFICIENCY AND BRAIN DISEASES 180
IODINE DEFICIENCY AND IODINE SUPPLEMENTATION IN NEUROLOGICAL DISORDERS 180
CONCLUSION 180
References 181
Chapter 17 - Nutritional Supplementation in Ehlers-Danlos Syndrome 184
INTRODUCTION 184
IS EHLERS-DANLOS SYNDROME A NEUROLOGICAL DISORDER? 186
DIETARY FACTS IN EHLERS-DANLOS SYNDROME 187
NUTRITIONAL RESOURCES BY CLINICAL FEATURE 187
CONCLUSIONS 190
References 191
SECTION III - MOOD AND COGNITION BY NUTRACEUTICAL
194
Chapter 18 - Ayurvedic Approach to Food and Dietary Supplements for the Brain and Neurologic Health 196
INTRODUCTION 196
THE THREE DOSHAS 196
IMPORTANCE OF DIET AND DIGESTION 197
SHADARASA (SIX TYPES OF TASTE) 197
PSYCHOLOGICAL CONSTITUTION AND FOOD 197
AYURVEDIC CONCEPT OF VYADHI (DISEASE) 197
VIRUDDHA AHARA (INCOMPATIBLE FOODS) 198
FOODS THAT ARE BENEFICIAL FOR THE BRAIN AND NEUROLOGICAL HEALTH 198
HERBS AND HERBAL MIXTURES FOR THE BRAIN AND NEUROLOGICAL HEALTH 198
GHEE AS A THERAPEUTIC VEHICLE 199
CONCLUSION 200
Acknowledgments 200
References 200
Chapter 19 - The Effect of Acai (Euterpe spp.) Fruit Pulp on Brain Health and Performance 202
INTRODUCTION 202
ACAI FRUIT PULP 203
CONCLUSION 207
References 207
Chapter 20 - Chili Pepper Compounds in the Management of Neuropathic Pain 210
INTRODUCTION 210
CHILI PEPPER AND ITS COMPOUNDS 210
PHARMACOLOGICAL FEATURES OF CAPSAICIN 212
FORMULATIONS OF TOPICAL CAPSAICIN 214
CAPSAICIN FOR THE TREATMENT OF PERIPHERAL NEUROPATHIC PAIN 214
CONCLUSIONS 215
References 216
Chapter 21 - Curcumin and Neurological/Brain Disorders 220
INTRODUCTION 220
HERBAL MEDICINES AND NERVOUS SYSTEM 221
CURCUMIN 222
A CURCUMIN SOURCE WITH ENHANCED BIOAVAILABILITY 223
CONCLUSION 224
References 224
SECTION IV - DRUGS AND FOODS AND NUTRACEUTICAL INTERACTIONS DURING TREATMENT OF NEURODEGENERATIVE DISEASES:TOXICITIES 228
Chapter 22 - The Effects of Taurine Exposure on the Brain and Neurological Disorders 230
INTRODUCTION 230
TAURINE DEVELOPMENTAL DISTRIBUTION IN THE BRAIN 230
TAURINE BIOSYNTHESIS IN THE BRAIN 231
BLOOD–BRAIN TAURINE TRANSPORT 232
ACTIONS OF TAURINE IN THE BRAIN 233
TAURINE IN LEARNING AND MEMORY 233
TAURINE IN NEURAL CONTROL OF ARTERIAL PRESSURE 234
References 235
Chapter 23 - Adverse Neurological Effects Caused by the Ingestion of Plants, Seeds, and Fruits 238
INTRODUCTION 238
CONSUMPTION OF TOXIC PLANTS IN THE DIET 238
HEALING PLANTS 239
ACUTE INTOXICATIONS DUE TO TOXIC PLANTS 239
HALLUCINOGENIC PLANTS AND CACTI 240
FUNGI AND MYCOTOXINS 241
CONCLUSION 242
References 242
Chapter 24 - Molecular Mechanisms of Geniposide and Genipin Against Alzheimer’s Disease 244
ANTI-A. TOXICITY 245
ANTI-OXIDATIVE STRESS 245
ANTIENDOPLASMIC RETICULUM STRESS 246
ANTI-INFLAMMATION 246
PROMOTING NEURITE OUTGROWTH 247
ACTIVATION OF GLUCAGON-LIKE PEPTIDE 1 RECEPTOR (GLP-1R) 248
SUMMARY 248
Acknowledgments 248
References 249
Chapter 25 - Flavones and Flavonols in Brain and Disease: Facts and Pitfalls 252
Facts and Pitfalls 252
BRAIN PATHOLOGY: OXIDATIVE STRESS AND INFLAMMATION 252
FLAVONES AND FLAVONOLS: CHEMICAL AND STRUCTURAL FEATURES 253
BRAIN EFFECTS OF FLAVONES AND FLAVONOLS: IN VIVO EVIDENCE 253
WORKING MECHANISMS UNDERLYING THE BRAIN EFFECTS OF FLAVONES AND FLAVONOLS: IN VITRO EVIDENCE 255
CONCLUSION 258
References 258
Chapter 26 - Mercury and Neurodegeneration 260
SOURCES OF MERCURY EXPOSURE 260
HG METABOLISM 261
INTERACTIONS WITH OTHER DIETARY FACTORS 262
ROLE OF HG IN NEUROLOGICAL PATHOLOGY 262
TREATMENT 264
References 265
Chapter 27 - Ameliorative Effects of Nutraceuticals in Neurological Disorders 268
INTRODUCTION 268
GARLIC (ALLIUM SATIVUM) 270
CURCUMIN (CURCUMA LONGA L) 271
ASHWAGANDHA (WITHANIA SOMNIFERA) 271
BRAHMI (BACOPA MONNIERI) 272
BERRIES 274
ALMONDS (PRUNUS DULCIS/AMYGDALUS L.) AND WALNUTS (JUGLANS REGIA L.) 275
MECHANISMS OF NUTRACEUTICALS IN AMELIORATING NEURODEGENERATION 275
CONCLUSION 276
References 276
Chapter 28 - The Role of Caffeine in Neurodegenerative Diseases: Possible Genetic and Cellular Signaling Mechanisms 284
Possible Genetic and Cellular Signaling Mechanisms 284
INTRODUCTION 284
THE GENETIC ROLE OF CAFFEINE IN ND 285
THE NON-GENETIC ROLE OF CAFFEINE IN NEURODEGENERATIVE DISEASES 289
CONCLUSION 295
References 295
Chapter 29 - Dietary Supplements as Cognitive Enhancers: The Role of Flavonoid-Rich Foods and their Relevance in Age-Related Neurodegeneration 304
The Role of Flavonoid-Rich Foods and their Relevance in Age-Related Neurodegeneration 304
INTRODUCTION 304
NEUROMODULATORY PATHWAYS UNDERLYING THE EFFECT OF FLAVONOIDS ON COGNITION 306
EFFECT OF FLAVONOIDS ON HORMETIC RESPONSE AND GUT MICROBIOTA 308
THE EFFECT OF FLAVONOIDS ON HUMAN COGNITIVE PERFORMANCE 309
CONCLUSION 309
References 311
SECTION V -
314
Chapter 30 - Meat, Fat, and Fruit Consumption and Autoimmune Neurological and Brain Disease 316
OVERVIEW 316
INTRODUCTION 316
NUTRITION AND AUTOIMMUNE REGULATION 319
MULTIPLE SCLEROSIS 319
MYASTHENIA GRAVIS 322
ALZHEIMER’S DISEASE 322
CONCLUSION 324
References 325
Chapter 31 - Ginsenosides as Food Supplements and Their Potential Role in Immunological and Neurodegenerative Disorders 326
INTRODUCTION 326
GINSENG CHEMISTRY 327
DIETARY SUPPLEMENTATION OF GINSENG 328
ROLE OF GINSENOSIDE IN THE IMMUNE SYSTEM AND IMMUNOLOGICAL DISORDERS 328
GINSENG AND INFLAMMATION-RELATED DISEASES 329
GINSENOSIDES AND THEIR APPLICATION IN NEUROLOGICAL AND NEURODEGENERATIVE DISORDERS 329
CONCLUSION 331
Acknowledgment 331
References 331
Chapter 32 - Antioxidant Actions of Spices and Their Phytochemicals on Age-Related Diseases 334
INTRODUCTION 334
SPICES IN HISTORY 335
CHEMICAL COMPOSITION OF SPICES 335
BIOLOGIC EFFECTS OF SPICES 336
SPICES AND ANTIOXIDANT ACTIVITY 337
MECHANISMS OF ACTION 338
EXPOSURE TO SPICES 339
CONCLUSION 339
References 340
Chapter 33 - Analgesic and Anti-Inflammatory Effects of Crocus sativus L. (Saffron) 342
INTRODUCTION 342
CHEMICAL COMPOSITION 342
SAFFRON USES IN TRADITIONAL MEDICINE 343
PHARMACOLOGICAL STUDIES ON THE BIOLOGICAL ACTIVITY OF SAFFRON 343
ANTINOCICEPTIVE AND ANTI-INFLAMMATORY EFFECTS 343
References 345
Chapter 34 - Electrophilic Derivatives of Omega-3 Fatty Acids for the Cure and Prevention of Neurodegenerative Disorders 348
DIETARY MODULATION OF OMEGA-3 POLYUNSATURATED FATTY ACIDS IN CELL MEMBRANES AND ITS SIGNIFICANCE FOR NEURODEGENERATIVE DISORDERS... 348
ENDOGENOUS GENERATION OF ELECTROPHILIC PUFAS FROM OMEGA-3 FATTY ACIDS AND THEIR BIOLOGICAL SIGNIFICANCE 350
ELECTROPHILE-SENSITIVE PATHWAYS AND NEURODEGENERATIVE DISORDERS 353
ELECTROPHILIC PUFAS AS NOVEL DRUGS FOR THE CURE AND PREVENTION OF NEURODEGENERATIVE DISORDERS 357
References 358
Chapter 35 - Antioxidants for the Prevention and Treatment of Multiple Sclerosis: An Overview 364
INTRODUCTION 364
ETIOLOGY AND PATHOGENESIS OF MS 365
OXIDATIVE STRESS, OXIDANTS, AND ANTIOXIDANTS 366
LIPOIC ACID 368
VITAMIN A 369
VITAMIN E 370
COENZYME Q10 371
CONCLUSION 372
References 372
Chapter 36 - High Caloric Diets in Amyotrophic Lateral Sclerois 378
INTRODUCTION 378
NUTRITION IN ALS 378
PERCUTANEOUS RADIOLOGICAL GASTROSTOMY AND PERCUTANEOUS ENDOSCOPIC GASTROSTOMY 379
HIGH-CALORIE DIETS IN ALS 379
NUTRACEUTICALS/DIETARY SUPPLEMENTS IN ALS 381
CALORIC RESTRICTION IN ALS 381
SUMMARY 381
References 382
SECTION VI -
386
Chapter 37 -
388
INTRODUCTION 388
NRF2: A REDOX SENSITIVE TRANSCRIPTION FACTOR AND REGULATOR OF CELLULAR ANTIOXIDANT DEFENSES 389
NUTRITION AND STROKE 390
NEUROVASCULAR PROTECTION IN STROKE BY PHYTONUTRIENTS 390
CLINICAL PERSPECTIVES AND CONCLUDING REMARKS 396
Acknowledgments 396
References 396
Chapter 38 - Oral Feeding in Patients with Intracerebral Hemorrhage: Risk versus Benefits 404
Risk versus Benefits 404
INTRODUCTION 404
MALNUTRITION AND DEHYDRATION 404
DYSPHAGIA 405
NONORAL FEEDING 405
DYSPHAGIA THERAPY 405
CONCLUSION 406
References 406
Chapter 39 - Neuroprotection by Dietary Isoflavones and Their Role in Cerebral Ischemia 408
INTRODUCTION 408
CEREBRAL ISCHEMIA 408
DIETARY ISOFLAVONES 409
CEREBRAL ISCHEMIA PREVENTION 410
CEREBRAL ISCHEMIA TREATMENT 411
REHABILITATION AND RECOVERY 411
MECHANISMS OF ACTION 412
CONCLUSION 413
References 413
Chapter 40 - Vitamin K Antagonists (Coumarins), Drugs Used in the Prevention and Treatment of Cardioembolism, Deep Vein Thrombosis, and Pulmonary Embolism 418
VITAMIN K 418
References 421
Chapter 41 - Prevention of Ischemia-Induced Neuronal Apoptosis by Vitamin E in Stroke-Prone Spontaneously Hypertensive Rats: Cellular Mechanisms of Antioxidants 422
Cellular Mechanisms of Antioxidants 422
INTRODUCTION 422
EPIDEMIOLOGICAL STUDIES SUGGEST THAT VITAMIN E PROTECTS AGAINST STROKE 422
PREVENTION OF NEURONAL DEATH BY VITAMIN E IN SHRSP/IZM RATS 423
COMPARISON BETWEEN ANTIHYPERTENSION DRUGS AND VITAMIN E IN DECREASING SHRSP/IZM NEURONAL DEATH 424
CONCLUSION 425
References 425
Chapter 42 - Diet, Stroke, and Traumatic Brain Injury 426
INTRODUCTION 426
SOY 426
OMEGA-3 FATTY ACIDS 427
PHENOLICS 428
GINSENG 428
CONCLUSION 428
References 428
SECTION VII -
432
Chapter 43 - A Plant-Food Diet in the Risk and Management of Parkinson’s Disease 434
INTRODUCTION 434
EPIDEMIOLOGY OF PD 434
PHYSIOPATHOLOGY OF PD 435
ETIOLOGY OF PD 435
DIETARY RISK FACTORS IN PD 435
DIET AND LEVODOPA 436
LEVODOPA AND DIETARY PROTEIN 437
THE PROTEIN-REDISTRIBUTION DIET 437
A NEW STRATEGY: NORMOPROTEIC PROTEIN-REDISTRIBUTED PLANT-FOOD (VEGAN) DIET 438
PLANT-FOOD DIETS AND COMORBIDITY IN PD 438
NORMOPROTEIC PROTEIN-REDISTRIBUTED PLANT-FOOD (VEGAN) DIET: PRACTICAL ASPECTS 439
CONCLUSION 440
SUMMARY 441
References 441
Chapter 44 - Nutraceuticals and Other Natural Products in Parkinson’s Disease Therapy: Focus on Clinical Applications 444
Focus on Clinical Applications 444
INTRODUCTION 444
VITAMINS AND PD 445
OMEGA FATTY ACIDS 446
COENZYME Q10 447
CITICOLINE 447
CREATINE 447
GLUTATHIONE 448
CARNOSINE 448
SPICES 448
TEA 448
CONCLUSIONS 448
References 449
Chapter 45 - Ketogenic Diet Treatment in Adults with Refractory Epilepsy 456
INTRODUCTION 456
KETOGENIC DIET 456
MODIFIED ATKINS DIET 459
CONCLUSION 461
References 461
Chapter 46 - Ketogenic Diets for the Treatment of Epilepsy 464
THE HISTORY OF THE KETOGENIC DIET 464
COMPOSITION, IMPLEMENTATION, AND MAINTENANCE OF THE CLASSIC KD 465
ALTERNATIVE FORMS OF DIETARY THERAPIES 465
SIDE EFFECTS 466
PROPOSED MECHANISM OF ACTION 467
INDICATIONS FOR KDS 467
THE KD AS A FIRST-LINE OR EARLY TREATMENT OF EPILEPSY 468
CONTRAINDICATIONS FOR THE USE OF THE KD 468
INTERACTIONS BETWEEN THE KD AND OTHER THERAPIES 468
THE KD AS A VIABLE LONG-TERM TREATMENT FOR EPILEPSY 469
THE FUTURE OF DIETARY THERAPIES 469
References 469
Chapter 47 - Nutritional/Metabolic Therapies in Animal Models of Amyotrophic Lateral Sclerosis, Alzheimer’s Disease, and Seizures 472
BACKGROUND 472
THERAPEUTIC KETOSIS AS A METABOLIC THERAPY 472
METABOLIC SUPPLEMENTATION 473
KD TREATMENT FOR SEIZURE DISORDERS 473
EFFICACY OF METABOLIC THERAPIES IN ANIMAL MODELS OF SEIZURE 474
NEURODEGENERATIVE DISEASES 475
METABOLIC THERAPIES IN MOUSE MODELS OF ALS 475
METABOLIC THERAPIES IN MOUSE MODELS OF AD 477
NEUROPROTECTIVE MECHANISM OF KETOSIS 478
CONCERNS 479
POTENTIAL FUTURE APPLICATION 480
References 480
Chapter 48 - Metabolic Dysfunctions in Epilepsy and Novel Metabolic Treatment Approaches 484
INTRODUCTION 484
GLYCOLYSIS PROVIDES ATP QUICKLY 485
IMPAIRMENTS OF GLYCOLYSIS IN EPILEPSY 486
IMPAIRMENTS OF THE TCA CYCLE IN EPILEPSY 486
ANTICONVULSANT EFFECTS OF CURRENT AND POTENTIAL METABOLIC TREATMENTS 488
ANTICONVULSANT MECHANISMS AND THE METABOLIC EFFECTS OF METABOLIC THERAPIES 490
CONCLUSION 492
References 492
Chapter 49 - Vitamin D for the Prevention of Alzheimer’s Disease 498
INTRODUCTION 498
BASIC PHYSIOLOGY AND METABOLISM OF VITAMIN D 498
REFERENCE INTAKE FOR VITAMIN D 499
TREATING VITAMIN D DEFICIENCY 499
THEORIES LINKING VITAMIN D TO AD 500
CLINICAL TRIAL DATA 500
CONCLUSION 500
References 501
Chapter 50 - Is Multiple Sclerosis a Sun Deprivation Disease?: Lessons from the Past for the Future Path 504
Lessons from the Past for the Future Path 504
INTRODUCTION 504
MS 505
VITAMIN D: AN OVERVIEW 505
VITAMIN D AND IMMUNE FUNCTION 508
VITAMIN D AND MS 508
WHAT WE KNOW NOW: FINDINGS AND LIMITATIONS 511
CONCLUSION 512
References 514
Index 518
Contributors
Juan Andres Abin-Carriquiry, Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
Zeliha S. Akdemir, Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
Alessio Alfieri, Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King’s College London, United Kingdom
Bahareh Amin, Department of Pharmacology and Physiology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
Giovanni Appendino, Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
Csilla Ari, Hyperbaric Biomedical Research Laboratory, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
Florencia Arredondo, Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
Michael Aschner, Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
William J. Banz, Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, IL, USA
Doris Barcellona, Internal Medicine and Hemocoagulopathies Unit, Department of Medical Sciences, University of Cagliari, Cagliari, Italy
Aysegul Bayir, Emergency Department, Faculty of Medicine, Selcuk University, Konya, Turkey
Muchukunte Mukunda Srinivas Bharath
Department of Neurochemistry
Neurotoxicology Laboratory at the Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
Fernanda Blasina, Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
Carlo Blundo
Unit of Cognitive and Behavioral Neurology, Division of Neurology and Neurophysiopathology, San Camillo-Forlanini Hospital, Rome, Italy
Department of Human Sciences, LUMSA University, Rome, Italy
Karin Borges, Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
James M. Brimson, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
Michela Bruschini, Unit of Cognitive and Behavioral Neurology, Division of Neurology and Neurophysiopathology, San Camillo-Forlanini Hospital, Rome, Italy
Valentina Carito, Institute of Cellular Biology and Neurobiology, National Research Council, Rome, Italy
Francisco Javier Carod Artal, Neurology Department, Raigmore Hospital, Inverness, UK; Visiting Professor of Neurology, Universitat Internacional de Catalunya, Barcelona, Spain
Marco Castori, Division of Medical Genetics, Department of Molecular Medicine, Sapienza University, Rome, Italy
Mauro Ceccanti, Center for Alcohol Abuse (Centro Riferimento Alcologico Regione Lazio-CRARL), Department of Clinical Medicine, University La Sapienza, Rome, Italy
George Chaldakov, Division of Cell Biology, Medical University, Varna, Bulgaria
H.M. Chandola, Chaudhary Brahm Prakash Ayurved Charak Sansthan, New Delhi, India
Neelima B. Chauhan, Neuroscience Research, Jesse Brown VA Medical Center, Chicago, IL, USA; Department of Pediatrics, University of Illinois at Chicago, Children’s Hospital of the University of Illinois, Chicago, IL, USA
Joseph L. Cheatwood, Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA
Suengmok Cho, Division of Metabolism and Functionality Research, Korea Food Research Institute, Sungnam, Republic of Korea
Stefania Ciafrè, Institute of Cellular Biology and Neurobiology, National Research Council, Rome, Italy
Chiara Cipollina
Fondazione Ri.Med, Palermo, Italy
Istituto di Biomedicina e Immunologia Molecolare (IBIM), Consiglio Nazionale delle Ricerche, Palermo, Italy
Rich W. Clough, Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA
Dominic D’Agostino, Hyperbaric Biomedical Research Laboratory, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
Federico Dajas, Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
Sukanya Das, Discipline of Pharmacology, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
Gurman Dhaliwal, University of Arizona, Tucson, AZ, USA
Filippo Di Sacco, Department of Anesthesia, University of Pisa, Pisa, Italy
Marcela Díaz, Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
Carolina Echeverry, Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
Marco Fiore, Institute of Cellular Biology and Neurobiology, National Research Council, Rome, Italy
Francesco Forfori, Department of Anesthesia, University of Pisa, Pisa, Italy
Federico Franceschi, Indena S.p.A., Milano, Italy
Gislaine Francieli da Silva, Post-Graduate Program of Pharmacutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
Stephanie J.B. Fretham, Department of Biology, Luther College, Decorah, IA, USA
Marilù Giacalone, Department of Anesthesia, University of Pisa, Pisa, Italy
Adriana del Giglio, ABC Foundation School of Medicine, Santo André, Brazil
Auro del Giglio, ABC Foundation School of Medicine, Santo André, Brazil
Francesco Giunta, Department of Anesthesia, University of Pisa, Pisa, Italy
Krishna Gokul, Department of Biochemistry and Nutrition; CSIR-Central Food Technological Research Institute, Mysore, India
Lixia Guo
Research Center of Medicinal Chemistry and Chemical Biology, Chongqing Technology and Business University, Chongqing, China
Chongqing Key Lab of Catalysis and Functional Organic Molecules, Chongqing Technology and Business University, China
Lan Thi Hoàng Nguyễn, Vietnamese American Medical Research Foundation, Westminster, CA, USA
Hossein Hosseinzadeh, Pharmaceutical Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR Iran
Apurva Kumar Joshi
Department of Neurochemistry
Neurotoxicology Laboratory at the Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
Vijaya Juturu, OmniActive Health Technologies Inc., Morristown, NJ, USA
Cigdem Kahraman, Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
Salman Khan, Ankara University, Faculty of Pharmacy, Department of Pharmacognosy, Tandoğan, Ankara, Turkey; Seoul National University, Natural Product Research Institute, Department of Pharmacy, Seoul, South Korea
Yeong Shik Kim, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Korea
Pavel Klein, Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
Eric H. Kossoff, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Jianhui Liu
Research Center of Medicinal Chemistry and Chemical Biology, Chongqing Technology and Business University, Chongqing, China
Chongqing...
Erscheint lt. Verlag | 11.9.2014 |
---|---|
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Gesundheitsfachberufe ► Diätassistenz / Ernährungsberatung |
Medizin / Pharmazie ► Medizinische Fachgebiete ► Neurologie | |
Technik ► Lebensmitteltechnologie | |
ISBN-10 | 0-12-411529-2 / 0124115292 |
ISBN-13 | 978-0-12-411529-3 / 9780124115293 |
Haben Sie eine Frage zum Produkt? |
Größe: 17,0 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 11,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich