A First Course in Applied Mathematics (eBook)
464 Seiten
John Wiley & Sons (Verlag)
978-1-118-27715-7 (ISBN)
concepts, and methods
Exploring related methods that can be utilized in various fields
of practice from science and engineering to business, A First
Course in Applied Mathematics details how applied mathematics
involves predictions, interpretations, analysis, and mathematical
modeling to solve real-world problems.
Written at a level that is accessible to readers from a wide
range of scientific and engineering fields, the book masterfully
blends standard topics with modern areas of application and
provides the needed foundation for transitioning to more advanced
subjects. The author utilizes MATLAB® to showcase the
presented theory and illustrate interesting real-world applications
to Google's web page ranking algorithm, image compression,
cryptography, chaos, and waste management systems. Additional
topics covered include:
* Linear algebra
* Ranking web pages
* Matrix factorizations
* Least squares
* Image compression
* Ordinary differential equations
* Dynamical systems
* Mathematical models
Throughout the book, theoretical and applications-oriented
problems and exercises allow readers to test their comprehension of
the presented material. An accompanying website features related
MATLAB® code and additional resources.
A First Course in Applied Mathematics is an ideal book for
mathematics, computer science, and engineering courses at the
upper-undergraduate level. The book also serves as a valuable
reference for practitioners working with mathematical modeling,
computational methods, and the applications of mathematics in their
everyday work.
JORGE REBAZA, PHD, is Associate Professor in the Department of Mathematics at Missouri State University. Dr. Rebaza has published numerous journal articles in his areas of research interest, which include numerical analysis, dynamical systems, matrix computations, and applied mathematics.
Preface xiii
1 Basics of Linear Algebra 1
1.1 Notation and Terminology 1
1.2 Vector and Matrix Norms 4
1.3 Dot Product and Orthogonality 8
1.4 Special Matrices 9
1.5 Vector Spaces 21
1.6 Linear Independence and Basis 24
1.7 Orthogonalization and Direct Sums 30
1.8 Column Space, Row Space and Null Space 34
1.9 Orthogonal Projections 43
1.10 Eigenvalues and Eigenvectors 47
1.11 Similarity 56
1.12 Bezier Curves Postscript Fonts 59
1.13 Final Remarks and Further Reading 68
Exercises 69
2 Ranking Web Pages 79
2.1 The Power Method 80
2.2 Stochastic, Irreducible and Primitive Matrices 84
2.3 Google's PageRank Algorithm 92
2.4 Alternatives to Power Method 106
2.5 Final Remarks and Further Reading 120
Exercises 121
3 Matrix Factorizations 131
3.1 LU Factorization 132
3.2 QR Factorization 142
3.3 Singular Value Decomposition (SVD) 155
3.4 Schur Factorization 166
3.5 Information Retrieval 186
3.6 Partition of Simple Substitution Cryptograms 194
3.7 Final Remarks and Further Reading 203
Exercises 205
4 Least Squares 215
4.1 Projections and Normal Equations 215
4.2 Least Squares and QR Factorization 224
4.3 Lagrange Multipliers 228
4.4 Final Remarks and Further Reading 231
Exercises 231
5 Image Compression 235
5.1 Compressing with Discrete Cosine Transform 236
5.2 Huffman Coding 260
5.3 Compression with SVD 267
5.4 Final Remarks and Further Reading 269
Exercises 271
6 Ordinary Differential Equations 277
6.1 One-Dimensional Differential Equations 278
6.2 Linear Systems of Differential Equations 307
6.3 Solutions via Eigenvalues and Eigenvectors 307
6.4 Fundamentals Matrix Solution 312
6.5 Final Remarks and Further Reading 316
Exercises 316
7 Dynamical Systems 325
7.1 Linear Dynamical Systems 326
7.2 Nonlinear Dynamical Systems 340
7.3 Predator-Prey Models with Harvesting 374
7.4 Final Remarks and Further Reading 385
Exercises 385
8 Mathematical Models 395
8.1 Optimization of a Waste Management System 396
8.2 Grouping Problem in Networks 404
8.3 American Cutaneous Leishmaniasis 410
8.4 Variable Population Interactions 420
References 431
Index 435
Erscheint lt. Verlag | 24.4.2012 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Technik | |
Schlagworte | Angewandte Mathematik • Applied mathematics • Differential Equations • Differentialgleichungen • linear algebra • Lineare Algebra • Mathematics • Mathematik |
ISBN-10 | 1-118-27715-5 / 1118277155 |
ISBN-13 | 978-1-118-27715-7 / 9781118277157 |
Haben Sie eine Frage zum Produkt? |
Größe: 18,9 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich