A Statistical Approach to Neural Networks for Pattern Recognition (eBook)
288 Seiten
John Wiley & Sons (Verlag)
978-0-470-14814-3 (ISBN)
between neural networks and statistics
A Statistical Approach to Neural Networks for Pattern
Recognition presents a statistical treatment of the Multilayer
Perceptron (MLP), which is the most widely used of the neural
network models. This book aims to answer questions that arise when
statisticians are first confronted with this type of model, such
as:
How robust is the model to outliers?
Could the model be made more robust?
Which points will have a high leverage?
What are good starting values for the fitting algorithm?
Thorough answers to these questions and many more are included,
as well as worked examples and selected problems for the reader.
Discussions on the use of MLP models with spatial and spectral data
are also included. Further treatment of highly important principal
aspects of the MLP are provided, such as the robustness of the
model in the event of outlying or atypical data; the influence and
sensitivity curves of the MLP; why the MLP is a fairly robust
model; and modifications to make the MLP more robust. The author
also provides clarification of several misconceptions that are
prevalent in existing neural network literature.
Throughout the book, the MLP model is extended in several
directions to show that a statistical modeling approach can make
valuable contributions, and further exploration for fitting MLP
models is made possible via the R and S-PLUS® codes that are
available on the book's related Web site. A Statistical Approach to
Neural Networks for Pattern Recognition successfully connects
logistic regression and linear discriminant analysis, thus making
it a critical reference and self-study guide for students and
professionals alike in the fields of mathematics, statistics,
computer science, and electrical engineering.
Robert A. Dunne, PhD, is Research Scientist in the Mathematical and Information Sciences Division of the Commonwealth Scientific and Industrial Research Organization (CSIRO) in North Ryde, Australia. Dr. Dunne received his PhD from Murdoch University, and his research interests include remote sensing and bioinformatics.
Notation and Code Examples.
Preface.
Acknowledgments.
1. Introduction.
2. The Multi-Layer Perception Model.
3. Linear Discriminant Analysis.
4. Activation and Penalty Functions.
5. Model Fitting and Evaluation.
6. The Task-Based MLP.
7. Incorporating Spatial Information into an MLP Classifier.
8. Influence Curves for the Multi-Layer Perceptron
Classifier.
9. The Sensitivity Curves of the MLP Classifier.
10. A Robust Fitting Procedure for MLP Models.
11. Smoothed Weights.
12. Translation Invariance.
13. Fixed-slope Training.
Appendix A. Function Minimization.
Appendix B. Maximum Values of the Influence Curve.
Topic Index.
"This book is a good introduction to neural networks for a
statistician." (Journal of the American Statistical
Association, March 2009)
"The book provides an excellent introduction to neutral networks
from a statistical perspective." (International Statistical
Review, 2008)
"Successful connects logistic regression and linear discriminant
analysis, thus making it critical reference and self-study guide
for students and professionals alike in the fields of mathematics,
statistics, computer science, and electrical engineering."
(Mathematical Reviews)
Erscheint lt. Verlag | 28.6.2008 |
---|---|
Reihe/Serie | Wiley Series in Computational Statistics | Wiley Series in Computational Statistics |
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Computational & Graphical Statistics • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Neural networks • Neuronale Netze • Rechnergestützte u. graphische Statistik • Rechnergestützte u. graphische Statistik • Spezialthemen Statistik • Statistics • Statistics Special Topics • Statistik |
ISBN-10 | 0-470-14814-4 / 0470148144 |
ISBN-13 | 978-0-470-14814-3 / 9780470148143 |
Haben Sie eine Frage zum Produkt? |
Größe: 12,0 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich