Nicht aus der Schweiz? Besuchen Sie lehmanns.de
A Statistical Approach to Neural Networks for Pattern Recognition - Robert A. Dunne

A Statistical Approach to Neural Networks for Pattern Recognition

(Autor)

Buch | Hardcover
288 Seiten
2007
Wiley-Interscience (Verlag)
978-0-471-74108-4 (ISBN)
CHF 196,15 inkl. MwSt
This book presents a statistical treatment of the Multilayer Perceptron (MLP), which is the most widely used of the neural network models, in a language that is familiar to practicing statisticians. Questions arise when statisticians are first confronted with such a model, and this book's aim is to provide thorough answers.
An accessible and up-to-date treatment featuring the connection between neural networks and statistics A Statistical Approach to Neural Networks for Pattern Recognition presents a statistical treatment of the Multilayer Perceptron (MLP), which is the most widely used of the neural network models. This book aims to answer questions that arise when statisticians are first confronted with this type of model, such as:

How robust is the model to outliers?

Could the model be made more robust?

Which points will have a high leverage?

What are good starting values for the fitting algorithm?

Thorough answers to these questions and many more are included, as well as worked examples and selected problems for the reader. Discussions on the use of MLP models with spatial and spectral data are also included. Further treatment of highly important principal aspects of the MLP are provided, such as the robustness of the model in the event of outlying or atypical data; the influence and sensitivity curves of the MLP; why the MLP is a fairly robust model; and modifications to make the MLP more robust. The author also provides clarification of several misconceptions that are prevalent in existing neural network literature.

Throughout the book, the MLP model is extended in several directions to show that a statistical modeling approach can make valuable contributions, and further exploration for fitting MLP models is made possible via the R and S-PLUS® codes that are available on the book's related Web site. A Statistical Approach to Neural Networks for Pattern Recognition successfully connects logistic regression and linear discriminant analysis, thus making it a critical reference and self-study guide for students and professionals alike in the fields of mathematics, statistics, computer science, and electrical engineering.

Robert A. Dunne, PhD, is Research Scientist in the Mathematical and Information Sciences Division of the Commonwealth Scientific and Industrial Research Organization (CSIRO) in North Ryde, Australia. Dr. Dunne received his PhD from Murdoch University, and his research interests include remote sensing and bioinformatics.

Notation and Code Examples. Preface.

Acknowledgments.

1. Introduction.

2. The Multi-Layer Perception Model.

3. Linear Discriminant Analysis.

4. Activation and Penalty Functions.

5. Model Fitting and Evaluation.

6. The Task-Based MLP.

7. Incorporating Spatial Information into an MLP Classifier.

8. Influence Curves for the Multi-Layer Perceptron Classifier.

9. The Sensitivity Curves of the MLP Classifier.

10. A Robust Fitting Procedure for MLP Models.

11. Smoothed Weights.

12. Translation Invariance.

13. Fixed-slope Training.

Appendix A. Function Minimization.

Appendix B. Maximum Values of the Influence Curve.

Topic Index.

Erscheint lt. Verlag 7.8.2007
Reihe/Serie Wiley Series in Computational Statistics
Zusatzinfo Charts: 1 B&W, 0 Color; Photos: 2 B&W, 0 Color; Drawings: 23 B&W, 0 Color; Maps: 7 B&W, 0 Color; Graphs: 64 B&W, 0 Color
Sprache englisch
Maße 161 x 242 mm
Gewicht 535 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 0-471-74108-6 / 0471741086
ISBN-13 978-0-471-74108-4 / 9780471741084
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20