Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Pharmaceutical Data Mining (eBook)

Approaches and Applications for Drug Discovery
eBook Download: PDF
2009 | 1. Auflage
584 Seiten
Wiley (Verlag)
978-0-470-56761-6 (ISBN)

Lese- und Medienproben

Pharmaceutical Data Mining -  Konstantin V. Balakin
Systemvoraussetzungen
141,99 inkl. MwSt
(CHF 138,70)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Leading experts illustrate how sophisticated computational data mining techniques can impact contemporary drug discovery and development In the era of post-genomic drug development, extracting and applying knowledge from chemical, biological, and clinical data is one of the greatest challenges facing the pharmaceutical industry. Pharmaceutical Data Mining brings together contributions from leading academic and industrial scientists, who address both the implementation of new data mining technologies and application issues in the industry. This accessible, comprehensive collection discusses important theoretical and practical aspects of pharmaceutical data mining, focusing on diverse approaches for drug discovery including chemogenomics, toxicogenomics, and individual drug response prediction. The five main sections of this volume cover: A general overview of the discipline, from its foundations to contemporary industrial applications Chemoinformatics-based applications Bioinformatics-based applications Data mining methods in clinical development Data mining algorithms, technologies, and software tools, with emphasis on advanced algorithms and software that are currently used in the industry or represent promising approaches In one concentrated reference, Pharmaceutical Data Mining reveals the role and possibilities of these sophisticated techniques in contemporary drug discovery and development. It is ideal for graduate-level courses covering pharmaceutical science, computational chemistry, and bioinformatics. In addition, it provides insight to pharmaceutical scientists, principal investigators, principal scientists, research directors, and all scientists working in the field of drug discovery and development and associated industries.

Konstantin V. Balakin is Head of the Laboratory of Information Technology in Medicinal Chemistry at the Institute of Physiologically Active Compounds at the Russian Academy of Sciences. He is also Director of the scientific consortium "Orchemed" (Organic Chemistry and Medicine), which currently includes 11 Russian academic institutes working in the field of organic, medicinal and biological chemistry, and drug discovery. Previously, he was Head of the Computational Chemistry Department at ChemDiv, Inc.¿Dr. Balakin¿is the author or coauthor of more than 90 peer reviewed research articles, reviews, and book chapters. He is the principal developer of the SmartMining and InformaGenesis software tools, which are special programs for pharmaceutical multivariate data mining.

Preface.

Acknowledgments.

Contributors.

PART I: DATA MINING IN THE PHARMACEUTICAL INDUSTRY: A GENERAL
OVERVIEW.

1 A History of the development of Data Mining in Pharmaceutical
Research ( David J. Livingstone and John Bradshaw).

2 Drug Gold and Data Dragons: Myths and Realities of Data Mining
in the Pharmaceutical Industry (Barry Robson and Andy
Vaithiligam).

3 Application of Data Mining Algorithms in Pharmaceutical
Research and Development (Konstantin V. Balakin and Nikolay P.
Savchuk).

PART II: CHEMOINFORMATICS-BASED APPLICATIONS.

4 Data Mining Approaches for Compound Selection and Iterative
Screening (Martin Vogt and Jurgen Bajorath).

5 Prediction of Toxic Effects of Pharmaceutical Agents (Andreas
Maunz and Christoph Helma).

6 Chemogenomics-Based Design of GPCR-Targeted Libraries Using
Data Mining Techniques (Konstantin V. Balakin and Elena V.
Bovina).

7 Mining High-Throughput Screening Data by Novel Knowledge-Based
Optimization Analysis (S. Frank Yan, Frederick J. King, Sumit K.
Chanda, Jeremy S. Caldwell, Elizabeth A. Winzeler, and Yingyao
Zhou).

PART III: BIOINFORMATICS-BASED APPLICATIONS.

8 Mining DNA Microarray Gene Expression Data (Paolo Magni).

9 Bioinformatics Approaches for Analysis of Protein-Ligand
Interactions (Munazah Andrabi, Chioko Nagao, Kenji Mizuguchi, and
Shandar Ahmad).

10 Analysis of Toxicogenomic Databases (Lyle D. Burgoon).

11 Bridging the Pharmaceutical Shortfall: Informatics Approaches
to the Discovery of Vaccines, Antigens, Epitopes, and Adjuvants
(Matthew N. Davies and Darren R. Flower).

PART IV: DATA MINING METHODS IN CLINICAL DEVELOPMENT.

12 Data Mining in Pharmacovigilance (Manfred Hauben and Andrew
Bate).

13 Data Mining Methods as Tools for Predicting Individual Drug
Response (Audrey Sabbagh and Pierre Darlu).

14 Data Mining Methods in Pharmaceutical Formulation (Raymond C.
Rowe and Elizabeth A Colbourn).

PART V: DATA MINING ALGORITHMS AND TECHNOLOGIES.

15 Dimensionality Reduction Techniques for Pharmaceutical Data
Mining (Igor V. Pletnev, Yan A. Ivanenkov, and Alexey V.
Tarasov).

16 Advanced Artificial Intelligence Methods Used in the Design
of Pharmaceutical Agents (Yan A. Ivanenkov and Ludmila M.
Khandarova).

17 Databases for Chemical and Biological Information (Tudor I.
Oprea, Liliana Ostopovici-Halip, and Ramona Rad-Curpan).

18 Mining Chemical Structural Information from the Literature
(Debra L. Banville).

Index.

"Its strength is that it gives beginners a good impression of our
contemporary data jungle." (ChemMedChem, 2010)

Erscheint lt. Verlag 25.11.2009
Reihe/Serie Wiley Series on Technologies for the Pharmaceutical
Wiley Series on Technologies for the Pharmaceutical
Mitarbeit Herausgeber (Serie): Sean Ekins
Sprache englisch
Themenwelt Medizin / Pharmazie Gesundheitsfachberufe
Medizin / Pharmazie Medizinische Fachgebiete Pharmakologie / Pharmakotherapie
Naturwissenschaften Chemie
Technik
Schlagworte Arzneimittelentwicklung • Bioinformatics & Computational Biology • Bioinformatik • Bioinformatik u. Computersimulationen in der Biowissenschaften • Biowissenschaften • Chemie • Chemistry • Computational Chemistry & Molecular Modeling • Computational Chemistry u. Molecular Modeling • Drug Discovery & Development • Life Sciences • Pharmazeutische Chemie • Wirkstoffforschung u. -entwicklung
ISBN-10 0-470-56761-9 / 0470567619
ISBN-13 978-0-470-56761-6 / 9780470567616
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 8,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich