Contemporary Issues in Exploratory Data Mining in the Behavioral Sciences
Routledge (Verlag)
978-0-415-81706-6 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
The results of EDM analyses can be perilous – they are often taken as predictions with little regard for cross-validating the results. This carelessness can be catastrophic in terms of money lost or patients misdiagnosed. This book addresses these concerns and advocates for the development of checks and balances for EDM analyses. Both the promises and the perils of EDM are addressed.
Editors McArdle and Ritschard taught the "Exploratory Data Mining" Advanced Training Institute of the American Psychological Association (APA). All contributors are top researchers from the US and Europe. Organized into two parts--methodology and applications, the techniques covered include decision, regression, and SEM tree models, growth mixture modeling, and time based categorical sequential analysis. Some of the applications of EDM (and the corresponding data) explored include:
selection to college based on risky prior academic profiles
the decline of cognitive abilities in older persons
global perceptions of stress in adulthood
predicting mortality from demographics and cognitive abilities
risk factors during pregnancy and the impact on neonatal development
Intended as a reference for researchers, methodologists, and advanced students in the social and behavioral sciences including psychology, sociology, business, econometrics, and medicine, interested in learning to apply the latest exploratory data mining techniques. Prerequisites include a basic class in statistics.
John J. McArdle is Senior Professor of Psychology at the University of Southern California where he heads the Quantitative Methods training program. Gilbert Ritschard is Professor of Statistics and project leader at the Swiss National Center of Competence in Research LIVES.
Part I: Methodological Aspects J.J. McArdle, Exploratory Data Mining Using Decision Trees in the Behavioral Sciences. G. Ritschard, CHAID and Earlier Supervised Tree Methods. J.Kopf, T. Augustin, C. Strobl, The potential of model-based recursive partitioning in the social sciences –Revisiting Ockham's Razor. A.M. Brandmaier, Timo von Oertzen, J.J. McArdle, U. Lindenberger, Exploratory Data Mining with Structural Equation Model Trees. G. Ritschard, F. Losa, P.Origoni, Validating Tree Descriptions of Women’s Labor Participation with Deviance-based Criteria. G.A. Marcoulides, W.Leite, Exploratory Data Mining Algorithms for Conducting Searches in Structural Equation Modeling: A Comparison of Some Fit Criteria. K.J. Grimm, N. Ram, M. P. Shiyko, L. L. Lo, A Simulation Study of the Ability of Growth Mixture Models to Uncover Growth Heterogeneity. R. Piccarreta, C.H. Elzinga, Mining for Association between Life Course Domains. G.Ritschard, R. Bürgin, M. Studer, Exploratory Mining of Life Event Histories. Part II: ApplicationsC.A. Prescott, Clinical versus Statistical Prediction of Zygosity in Adult Twin Pairs: An Application of Classification Trees. J.J. McArdle, Dealing with Longitudinal Attrition Using Logistic Regression and Decision Tree Analyses. J.J. McArdle, Adaptive Testing of the Number Series Test Using Standard Approaches and a New Decision Tree Analysis Approach. T. S. Paskus, Using EDM to Identify Academic Risk among College Student-Athletes in the United States. S. B. Scott, B. R. Whitehead, C. S. Bergeman, and L. Pitzer, Understanding Global Perceptions of Stress in Adulthood through Tree-Based Exploratory Data Mining. P. Ghisletta, Recursive Partitioning to Study Terminal Decline in the Berlin Aging Study. Y. Zhou, K.M. Kadlec, J. J. McArdle, Predicting Mortality from Demographics and Specific Cognitive Abilities in the Hawaii Family Study of Cognition. K. F. Widaman, K.J. Grimm, Exploratory Analysis of Effects of Prenatal Risk Factors on Intelligence in Children of Mothers with Phenylketonuria.
Reihe/Serie | Quantitative Methodology Series |
---|---|
Zusatzinfo | 96 Tables, black and white; 58 Line drawings, black and white; 59 Halftones, black and white; 117 Illustrations, black and white |
Verlagsort | London |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 748 g |
Themenwelt | Geisteswissenschaften ► Psychologie ► Allgemeine Psychologie |
Informatik ► Datenbanken ► Data Warehouse / Data Mining | |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
Sozialwissenschaften ► Soziologie | |
Technik ► Elektrotechnik / Energietechnik | |
ISBN-10 | 0-415-81706-4 / 0415817064 |
ISBN-13 | 978-0-415-81706-6 / 9780415817066 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich