Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Zinc Finger Proteins (eBook)

From Atomic Contact to Cellular Function

SHIRO IUCHI, Natalie Kuldell (Herausgeber)

eBook Download: PDF
2007 | 2005
XVI, 276 Seiten
Springer US (Verlag)
978-0-387-27421-8 (ISBN)

Lese- und Medienproben

Zinc Finger Proteins -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
In the early 1980s, a few scientists started working on a Xenopus transcription factor, TFIIIA. They soon discovered a novel domain associated with zinc, and named this domain 'zinc finger. ' Th e number of proteins with similar zinc fingers grew quickly and these proteins are now called C2H2, Cys2His2 or classical zinc finger proteins. To date, about 24,000 C2H2 zinc finger proteins have been recognized. Approximately 700 human genes, or more than 2% of the genome, have been estimated to encode C2H2 finger proteins. From the beginning these proteins were thought to be numerous, but no one could have predicted such a huge number. Perhaps thousands of scientists are now working on C2H2 zinc finger proteins fi-om variou s viewpoints. This field is a good example of how a new science begins with the insight of a few scientists and how it develops by efforts of numerous independent scientists, in contrast to a policy-driven scientific project, such as the Human Genome Project, with goals clearly set at its inception and with work performed by a huge collaboration throughout the world. As more zinc finger proteins were discovered, several subfamilies, such as C2C2, CCHC, CCCH, LIM, RING, TAZ, and FYVE emerged, increasing our understanding of zinc fingers. The knowledge was overwhelming. Moreover, scientists began defining the term 'zinc finger' differently and using various names for identical zinc fingers. These complications may explain why no single comprehensive resource of zinc finger proteins was available before this publication.
In the early 1980s, a few scientists started working on a Xenopus transcription factor, TFIIIA. They soon discovered a novel domain associated with zinc, and named this domain "e;zinc finger. "e; Th e number of proteins with similar zinc fingers grew quickly and these proteins are now called C2H2, Cys2His2 or classical zinc finger proteins. To date, about 24,000 C2H2 zinc finger proteins have been recognized. Approximately 700 human genes, or more than 2% of the genome, have been estimated to encode C2H2 finger proteins. From the beginning these proteins were thought to be numerous, but no one could have predicted such a huge number. Perhaps thousands of scientists are now working on C2H2 zinc finger proteins fi-om variou s viewpoints. This field is a good example of how a new science begins with the insight of a few scientists and how it develops by efforts of numerous independent scientists, in contrast to a policy-driven scientific project, such as the Human Genome Project, with goals clearly set at its inception and with work performed by a huge collaboration throughout the world. As more zinc finger proteins were discovered, several subfamilies, such as C2C2, CCHC, CCCH, LIM, RING, TAZ, and FYVE emerged, increasing our understanding of zinc fingers. The knowledge was overwhelming. Moreover, scientists began defining the term "e;zinc finger"e; differently and using various names for identical zinc fingers. These complications may explain why no single comprehensive resource of zinc finger proteins was available before this publication.

CONTENTS 5
EDITORS 7
CONTRIBUTORS 7
PREFACE 13
ABBREVIATIONS 14
The Discovery of Zinc Fingers and Their Practical Applications in Gene Regulation: A Personal Account 17
C2H2 Zinc Fingers As DNA Binding Domains 23
TFIIIA: A Sophisticated Zinc Finger Protein 30
GAGA: Structural Basis for Single Cys2 His2 Zinc Finger- DNA Interaction 36
The DNA- Binding Domain of GATA Transcription Factors— A Prototypical Type IV Cys2 - Cys2 Zinc Finger 42
MutM: Single C2 C2 Zinc Finger- DNA Interaction 47
Homing Endonuclease I- TevI: An Atypical Zinc Finger with a Novel Function 51
Zinc Finger Interactions with Metals and Other Small Molecules 55
Synthetic Zinc Finger Transcription Factors 63
THIIA and p43: Binding to 5S Ribosomal RNA 72
RNA Binding by Single Zinc Fingers 82
Wig- 1, a p53- Induced Zinc Fineer Protein that Binds Double Stranded RNA 92
Tandem CCCH Zinc Finger Proteins in mRNA Binding 96
Ribosomal Zinc Finger Proteins: The Structure and the Function of Yeast YL37a 107
LIM Domain and Its Binding to Target Proteins 115
RING Finger- B Box- Coiled Coil ( RBCC) Proteins As Ubiquitin Ligase in the Control of Protein Degradation and Gene Regulation 122
Structure and Function of the CBP/ p300 TAZ Domains 130
A Zinc Ribbon Motif Is Essential for the Formation of Functional Tetrameric Protein Kinase CK2 137
The FYVE Finger: A Phosphoinositide Binding Domain 144
The BTB Domain Zinc Finger Proteins 150
KRAB Zinc Finger Proteins: A Family of Repressors Mediating Heterochromatin- Associated Gene Silencing 167
The Superfamily of SCAN Domain Containing Zinc Finger Transcription Factors 172
Spl and Huntington's Disease 184
The Role of WTl in Development and Disease 190
Yin Yang 1 198
The Multiple Cellular Functions of TFIIIA 211
The Role of the Ikaros Gene Family in Lymphocyte Development 216
Basonuclin: A Zinc Finger Protein of Epithelial Cells and Reprocmctive Germ Cells 223
ZAS Zinc Fineer Proteins: The Other KB- Binding Protein Family 229
Role of GATA Factors in Development 237
The Androgen Receptor and Spinal and Bulbar Muscular Atrophy 248
The Role of XPA in DNA Repair 255
MOF, an Acetyl Transferase Involved in Dosage Compensation in Drosophila^ Uses a CCHC Finger for Substrate Recognition 263
MDM2: RING Finger Protein and Regulator of p53 268
The Zip Family of Zinc Transporters 277
Apoptosis by Zinc Deficiency 281
INDEX 288

Erscheint lt. Verlag 6.3.2007
Reihe/Serie Molecular Biology Intelligence Unit
Molecular Biology Intelligence Unit
Zusatzinfo XVI, 276 p. 170 illus., 19 illus. in color.
Verlagsort New York
Sprache englisch
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete Onkologie
Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Naturwissenschaften Biologie Biochemie
Naturwissenschaften Biologie Mikrobiologie / Immunologie
Technik
Schlagworte DNA • gene expression • genes • protein family • proteins • ribosomal RNA • RNA • signal transduction • transcription
ISBN-10 0-387-27421-9 / 0387274219
ISBN-13 978-0-387-27421-8 / 9780387274218
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 36,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
CHF 68,35
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
CHF 68,35