Biorational Control of Arthropod Pests (eBook)
XI, 408 Seiten
Springer Netherland (Verlag)
978-90-481-2316-2 (ISBN)
For nearly 50 years, pest control was mostly based on broad-spectrum conv- tional insecticides such as organochlorines, organophosphates, carbamates and pyrethroids. However, the severe adverse effects of pesticides on the environment, problems of resistance reaching crisis proportions and public protests led to stricter regulations and legislation aimed at reducing their use. Ways to reduce the use of synthetic pesticides in plant protection and to use more alternative and novel me- ods for pest control or biorational control are the challenges of pest control for the twenty-first century. The term biorational (biological + rational) pesticides can be defined as the use of specific and selective chemicals, often with a unique modes of action, that are compatible with natural enemies and the environment, with minimal effect on n- target organisms. Biorational control is based on a diversity of chemical, biological and physical approaches for controlling insect pests which results in minimum risk to man and the environment.
159158_1_En_FM1_Chapter_OnlinePDF.pdf 1
159158_1_En_1_Chapter_OnlinePDF.pdf 11
Biorational Pest Control – An Overview 11
1 Introduction 11
2 The Term ‘Biorational’ 12
3 Crop Protection Targeting Specific Biochemical Sites in Insect Pests 16
4 Exploitation of Plant Natural Products as a Source of Environmentally-Friendly Pesticides 18
5 Utilization of Semiochemicals (Pheromones) and Other Insect Communication Signals for Controlling Insect Pests 19
5.1 Ways for Exploiting Pheromones 20
5.2 Insect’s Mechanical Signals 21
6 Biotechnology Manipulations (Genetic Approach) as Novel Strategies Against Arthropod Pests 21
7 Pesticide Resistance and Management Strategies 23
References 26
159158_1_En_2_Chapter_OnlinePDF.pdf 31
Agonists/Antagonists of the Insect Kinin and Pyrokinin/PBAN Neuropeptide Classes as Tools for Rational Pest Control 31
1 Introduction 31
2 Insect Kinin Neuropeptide Family 31
2.1 Chemical, Conformational and Stereochemical Aspects of IK/Receptor Interaction 32
2.2 Biostable, IK Analogs That Interact with Receptors and Bioassays 33
2.3 Nonpeptide Mimetic Agonists/Antagonists of Expressed IK Receptors 38
2.4 C-Terminal Aldehyde IK Analogs 39
2.5 H. Zea Larval Weight-Gain Inhibition Bioassay 39
2.6 In vitro and in vivo Housefly Diuretic Bioassays 40
3 Pyrokinin/PBAN Neuropeptide Family 42
3.1 Chemical and Conformational Aspects of PK/PBAN Activity 42
3.2 Development of a Selective PK/PBAN Agonist Analog 44
3.3 Biostable PK/PBAN Analogs 46
3.4 PK/PBAN Analogs with Enhanced Topical and/or Oral Bioavailability 48
3.5 Topical Activity 48
3.6 Oral Activity 50
4 Summary 52
References 53
159158_1_En_3_Chapter_OnlinePDF.pdf 59
Rational Design of Insect Control Agents: The PK/PBAN Family as a Study Case* 59
1 Introduction 59
1.1 Insect Neuropeptides as Control Agents/Insecticides 60
1.2 Insect Nps: Historic Perspective 60
2 INAI Approach to the Development of Novel Insect Np-Based Antagonist Insecticides 62
2.1 The INAI Approach 62
2.2 PBAN and PK/PBAN Family 65
2.2.1 Isolation and Identification of PBAN and Other Pheromonotropic Peptides 65
2.2.2 Biological Activity of the PK/PBAN Family 69
2.2.3 Structure Activity Relationship of the PK/PBAN Family 71
2.2.4 PK/PBAN Target Organ and Receptors 72
2.3 Implementation of the INAI Strategy for the PK/PBAN Family 76
2.3.1 Discovery of PK/PBAN Antagonists 76
2.3.2 Determination of the Bioactivity, SAR, Selectivity, and Bioavailability of the BBC Antagonists 78
2.3.3 PK/PBAN Receptor Cloning and Characterization 81
3 Concluding Remarks and Future Prospects 82
References 83
159158_1_En_4_Chapter_OnlinePDF.pdf 92
Tyramine and Octopamine Receptors as a Source of Biorational Insecticides 92
1 Introduction 92
2 Effect of TA and OA on Sex-Pheromone Production 93
3 Stress Reaction 96
4 Effect of TA and OA on Metamorphosis 98
5 Prevention of Progeny Formation in D. melanogaster 101
6 Agonists and Antagonists for TA and OA Receptors 103
7 Computer-Assisted Drug Design 106
7.1 Homology Modeling, Agonist Binding Site Identification, and Docking 106
7.2 Hypothesis Generation 107
7.3 Comparative Receptor Surface Analysis 108
7.4 Molecular Field Analysis 109
8 Conclusions 110
References 111
159158_1_En_5_Chapter_OnlinePDF.pdf 119
Recent Advances in the Mode of Action of Juvenile Hormones and Their Analogs 119
1 Introduction 119
2 JH-Response Genes 121
3 Proteins Identified to be Involved in JH and JHA Action 122
3.2 29 kDa Manduca Protein 123
3.3 35 kDa Membrane Protein 123
3.5 USP 124
3.6 Met 124
3.7 FKBP39 and Chd64 126
4 JHA Methoprene Blocks Midgut Remodeling by Modulating 20E Action 126
5 JHA Hydroprene Blocks Metamorphosis and Midgut Remodeling by Modulating 20E Action 127
6 JH and JHA Potentiation of EcR Transactivation 128
7 JH and JHA Suppress 20E Enhancement of Antimicrobial Peptide Gene Expression 128
8 JH Modulation of 20E Action Could be Mediated by Protein: Protein Interactions Among Proteins Involved in JH and Ecdystero 129
9 Phosphorylation Plays a Key Role in JH Action 129
10 Prospectives on the Mode of Action of JH and JHA 130
References 132
159158_1_En_6_Chapter_OnlinePDF.pdf 138
g.-Aminobutyric Acid Receptors: A Rationale for Developing Selective Insect Pest Control Chemicals 138
1 Introduction 138
2 Immunohistochemical Distribution of GABA, Glutamate Decarboxylase, GABA Transporter, and GABARs in the Central Nervous Syst 141
3 Overview of Ligands 145
3.1 NCAs: Structural Diversity 145
3.1.1 Terpenoids and Other Natural Products 145
3.1.2 Trioxabicyclo[2.2.2]octanes and Their Derivatives 147
3.1.3 Organochlorine Insecticides and Related Cycloalkanes 147
3.1.4 Phenylpyrazoles and Other Phenylheterocycles 149
3.1.5 Avermectins and Related Macrolides 149
3.1.6 Nodulisporic Acid 150
3.2 Agonists and Competitive Antagonists 150
4 Molecular Assembly of Insect GABARs 151
4.1 Assembly: Homomer or Heteromer 151
4.2 GABA-vs. Glutamate-Gated Chloride Channels 152
5 Exploring Pharmacophores for Pesticide Design and Resistance Management 153
5.1 NCA Structure-Activity Relationships 153
5.2 Location of the NCA Binding Site 155
5.3 NCA Site Sensitivity and Insects’ Resistance to NCA Insecticides Due to Target Site Insensitivity 158
6 Summary and Future Perspective 160
References 161
159158_1_En_7_Chapter_OnlinePDF.pdf 170
Natural Products: Plant Lectins as Important Tools in Controlling Pest Insects 170
1 Introduction 170
1.1 Classical Lectins 172
1.2 Inducible Lectins 172
2 Insecticidal Activity of Plant Lectins 175
2.1 Lepidoptera 175
2.2 Coleoptera 177
2.3 Hemiptera 178
3 Lectins and Insect Behavior 180
4 Mode of Action 181
4.1 Stability of Plant Lectins 181
4.2 Potential Targets for Plant Lectins 182
4.3 Using Plant Lectins as a Delivery Tool 184
5 Beneficial Insects 185
6 Perspectives 187
References 188
159158_1_En_8_Chapter_OnlinePDF.pdf 195
Genetically Modified Insects as a Tool for Biorational Control 195
1 Introduction 195
2 Population Suppression 197
3 Population Replacement 199
4 Refractoriness Genes 199
5 Gene Drive Systems 200
6 Wolbachia 201
Wolbachia and Cytoplasmic Incompatibility 202
8 Wolbachia as a Tool for the Control of Insect Pests and Disease Vectors 203
9 Regulatory Aspects of Transgenic Insects 204
10 Regulatory Aspects of Biopesticides 206
References 207
159158_1_En_9_Chapter_OnlinePDF.pdf 213
Anchor 1 213
Anchor 2 213
Anchor 3 214
Anchor 4 216
Anchor 5 220
Anchor 6 221
Anchor 7 225
Anchor 8 230
Anchor 10 231
159158_1_En_10_Chapter_OnlinePDF.pdf 238
Novel Approaches for the Management of Mealybug Pests 238
1 Introduction 238
2 Economic Importance of Mealybugs 239
3 Understanding the Target Organism: a First Step to Sustainable Mealybug Management 241
3.1 Morphology and Life Cycle 241
3.2 Feeding Process and Endosymbionts 242
3.3 Reproductive Systems and Sex Determination 243
3.4 Sex Pheromones 243
3.5 Male Flight and Mate Location 247
3.6 Defense System 248
3.7 Host Plants 250
3.8 Overwintering 250
3.9 Dispersal 251
3.10 Population Trends and Seasonal Development 251
3.11 Mealybug Relationships with Ants 252
3.12 Associated Pests 253
4 The Origin of Mealybug Pest Status 254
5 Actual Management Tactics 256
5.1 Biological Control 256
5.1.1 Natural Enemies of Mealybugs and Other Associated Arthropods 256
5.1.2 Classical Biological Control 258
5.1.3 Augmentative Control Tactics 259
5.2 Pheromone-Based Management Tactics 260
5.2.1 Pheromone Production 260
5.2.2 Pheromone Traps and Monitoring 262
5.2.3 Mass Trapping 263
5.2.4 Mating Disruption 263
5.2.5 Kairomonal Response 263
5.3 Chemical Control 265
6 Prognosis: Future Management Strategies Against Pest Mealybugs 266
6.1 The Management Tactics 267
6.1.1 Male Vacuum 267
6.1.2 Monitoring and Detection of Mealybug Hotspots 268
6.1.3 Augmentation of Natural Enemies 269
6.1.4 Chemical Control 269
7 Conclusion 270
References 270
Novel Approaches for the Management of Mealybug Pests 238
1 Introduction 238
2 Economic Importance of Mealybugs 239
3 Understanding the Target Organism: a First Step to Sustainable Mealybug Management 241
3.1 Morphology and Life Cycle 241
3.2 Feeding Process and Endosymbionts 242
3.3 Reproductive Systems and Sex Determination 243
3.4 Sex Pheromones 243
3.5 Male Flight and Mate Location 247
3.6 Defense System 248
3.7 Host Plants 250
3.8 Overwintering 250
3.9 Dispersal 251
3.10 Population Trends and Seasonal Development 251
3.11 Mealybug Relationships with Ants 252
3.12 Associated Pests 253
4 The Origin of Mealybug Pest Status 254
5 Actual Management Tactics 256
5.1 Biological Control 256
5.1.1 Natural Enemies of Mealybugs and Other Associated Arthropods 256
5.1.2 Classical Biological Control 258
5.1.3 Augmentative Control Tactics 259
5.2 Pheromone-Based Management Tactics 260
5.2.1 Pheromone Production 260
5.2.2 Pheromone Traps and Monitoring 262
5.2.3 Mass Trapping 263
5.2.4 Mating Disruption 263
5.2.5 Kairomonal Response 263
5.3 Chemical Control 265
6 Prognosis: Future Management Strategies Against Pest Mealybugs 266
6.1 The Management Tactics 267
6.1.1 Male Vacuum 267
6.1.2 Monitoring and Detection of Mealybug Hotspots 268
6.1.3 Augmentation of Natural Enemies 269
6.1.4 Chemical Control 269
7 Conclusion 270
References 270
Novel Approaches for the Management of Mealybug Pests 238
1 Introduction 238
2 Economic Importance of Mealybugs 239
3 Understanding the Target Organism: a First Step to Sustainable Mealybug Management 241
3.1 Morphology and Life Cycle 241
3.2 Feeding Process and Endosymbionts 242
3.3 Reproductive Systems and Sex Determination 243
3.4 Sex Pheromones 243
3.5 Male Flight and Mate Location 247
3.6 Defense System 248
3.7 Host Plants 250
3.8 Overwintering 250
3.9 Dispersal 251
3.10 Population Trends and Seasonal Development 251
3.11 Mealybug Relationships with Ants 252
3.12 Associated Pests 253
4 The Origin of Mealybug Pest Status 254
5 Actual Management Tactics 256
5.1 Biological Control 256
5.1.1 Natural Enemies of Mealybugs and Other Associated Arthropods 256
5.1.2 Classical Biological Control 258
5.1.3 Augmentative Control Tactics 259
5.2 Pheromone-Based Management Tactics 260
5.2.1 Pheromone Production 260
5.2.2 Pheromone Traps and Monitoring 262
5.2.3 Mass Trapping 263
5.2.4 Mating Disruption 263
5.2.5 Kairomonal Response 263
5.3 Chemical Control 265
6 Prognosis: Future Management Strategies Against Pest Mealybugs 266
6.1 The Management Tactics 267
6.1.1 Male Vacuum 267
6.1.2 Monitoring and Detection of Mealybug Hotspots 268
6.1.3 Augmentation of Natural Enemies 269
6.1.4 Chemical Control 269
7 Conclusion 270
References 270
159158_1_En_11_Chapter_OnlinePDF.pdf 284
Manipulation of Insect Signaling for Monitoring and Control of Pest Insects 284
1 Introduction 284
2 Chemical Signals 286
2.1 Types of Chemical Signals 288
2.2 Exploitation and Manipulation of Chemical Signals 290
2.3 Pheromones for Detection and Sampling of Insect Populations 291
2.4 Management of Insects by Pheromone-Based Mating Disruption 292
2.5 Insect Control by Pheromone-Based Mass Trapping 294
2.6 Semiochemically Based Attract and Kill Methodologies 294
2.7 Exploitation of Alarm Pheromones 295
2.8 Practical Considerations for Exploitation of Pheromones for Insect Management 296
2.8.1 Biology of the Target Insect 296
2.8.2 Crop Characteristics 297
2.8.3 Pheromone Chemistry 297
2.8.4 Economic and Regulatory Issues 298
3 Mechanical Signals in the Insect World 299
3.1 Characteristics of Mechanical Signals Transmitted Through Plants, Air, or on Water Surfaces 300
3.2 The Use of Different Mechanical Signal Modalities 303
3.3 Signal Types and Behavior 304
3.4 Sound Communication in Stink Bugs 305
3.4.1 Biology and General Statement of Stink Bug Economic Importance 305
3.4.2 Signals Involved in Communication During Mating Behavior of Stink Bugs 306
3.4.3 Insect–Plant Interactions During Substrate-Borne Communication 308
3.5 Disruption or Manipulation of Acoustic Signals as a Potential Method for Insect Management 310
3.5.1 Attraction of Parasitoids and Predators 310
3.5.2 Interruption with Induced Vibrations 311
3.5.3 Communication and Insecticides 312
3.5.4 Calling Signals in Combination with Pheromone Traps 313
4 Summary 313
References 314
159158_1_En_12_Chapter_OnlinePDF.pdf 322
Physical Control: An Important Tool in Pest Management Programs 322
1 Introduction 322
2 Insect Exclusion Screens 322
3 Colored Shade Netting 325
4 Fencing 325
5 Soil Solarization 325
6 Mulching 326
7 Pneumatic Removal 326
8 Conclusions 326
References 327
159158_1_En_13_Chapter_OnlinePDF.pdf 330
A Systems Approach to IPM Integration, Ecological Assessment and Resistance Management in Tree Fruit Orchards 330
1 Introduction 330
1.1 Twentieth Century IPM 330
2 Impact of FQPA and the Global Food System on the IPM Paradigm 331
3 A New Paradigm for IPM Integration 332
5 The PIC Triad Applied to IPM Integration in Tree Fruits 334
6 Influence of the Environmental or GREEN Social Culture in the US on IPM 340
7 Integrating Functional Ecology into the IPM Paradigm 341
8 Integrating Ecosystem Assessment into the IPM Paradigm 343
9 Ecosystem Friendly IPM in the Twenty-First Century 347
10 Implications of the Twenty-First Century IPM Paradigm on Resistance Management 348
159158_1_En_14_Chapter_OnlinePDF.pdf 351
Mechanisms of Acaricide Resistance in the Two-Spotted Spider Mite Tetranychus urticae 351
1 Tetranychus urticae – The Two-Spotted Spider Mite 351
2 Control of Tetranychus urticae 353
3 Resistance Development and Mechanisms 353
3.1 Metabolic Resistance 355
3.2 Target Site Resistance 356
4 Acaricide Resistance in T. urticae 356
4.1 Genetics of Resistance in T. urticae 357
4.2 Cross-Resistance 358
5 Investigated Cases of Resistance in T. urticae to Some Major Acaricide Groups 358
5.1 Organophosphates 358
5.1.1 OP Resistance Reports 359
5.1.2 OP Resistance Mechanisms 361
Target Site Insensitivity-Based Resistance 361
Biochemical Studies on the AChE Insensitivity 361
Molecular Basis of the AchE Insensitivity 362
Metabolic Resistance 363
5.1.3 Genetics and Evolution of OP Target Resistance in T. urticae 365
5.2 Pyrethroids 366
5.2.1 Pyrethroid Resistance Reports 366
5.2.2 Mechanisms of Resistance to Pyrethroids 368
Behavioral Response 370
Metabolic Resistance 370
The Use of Synergists and Cross Resistance Studies 370
Biochemical Studies 371
Target Site Resistance 372
5.3 METI-Acaricides 374
5.3.1 METI-Resistance Reports 375
5.3.2 Mechanisms of Resistance to METIs 376
Metabolic Resistance 376
Target-Site Based Resistance 377
5.4 Bifenazate 380
5.4.1 Mode of Action and the Discovery of Putative Target-Site Point Mutations 380
Resistance Mutations in Field Collected Bifenazate Resistant Strains 381
Heteroplasmy and the Inheritance of Mitochondrial Encoded Resistance 382
Complex III as Target-Site and Bifenazate Cross-Resistance 383
5.5 Avermectins and Milbemycins 385
5.5.1 Abamectin Resistance Reports 385
5.5.2 Abamectin Resistance Mechanism 386
5.6 Tetronic Acid Derivatives 386
5.6.1 Resistance to Spirodiclofen 387
5.7 Miscellaneous Compounds 388
References 389
159158_1_En_BM1_Chapter_OnlinePDF.pdf 398
Erscheint lt. Verlag | 28.8.2009 |
---|---|
Zusatzinfo | XI, 408 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Studium ► 1. Studienabschnitt (Vorklinik) ► Biochemie / Molekularbiologie |
Naturwissenschaften ► Biologie ► Botanik | |
Naturwissenschaften ► Biologie ► Zoologie | |
Technik | |
Schlagworte | Biorational control • Biotechnology • Entomology • Fruit • insect • Insect hormones • natural product • Natural Products • Neuropeptides • Resistyance management |
ISBN-10 | 90-481-2316-X / 904812316X |
ISBN-13 | 978-90-481-2316-2 / 9789048123162 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich