Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Lost Sex -

Lost Sex (eBook)

The Evolutionary Biology of Parthenogenesis
eBook Download: PDF
2009 | 2009
XVII, 615 Seiten
Springer Netherland (Verlag)
978-90-481-2770-2 (ISBN)
Systemvoraussetzungen
213,99 inkl. MwSt
(CHF 208,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Sex is the queen of problems in evolutionary biology. Generations of researchers have investigated one of the last remaining evolutionary paradoxes: why sex exists at all. Given that sexual reproduction is costly from an evolutionary point of view, one could wonder why not all animals and plants reproduce asexually. Dozens of contemporary hypotheses attempt to explain the prevalence of sex and its advantages and predict the early extinction of fully asexual lineages.

The major theme of this book is: what is the fate of animal and plant groups in which sex is lost? Initial chapters discuss theory behind asexual life: what major disadvantages do asexual groups have to face, what are the genetic and ecological consequences and what does this theory predict for more applied aspects of asexual life, for example in agricultural pests, diseases as well as in cultural crops such as grapes. Cases studies in many animals (focusing on both invertebrates and vertebrates) and plants reveal parallel, but also singularly novel adaptations to the absence of meiosis and syngamy. And last but not least, are asexuals really doomed to early extinction or do genuine ancient asexuals exist?

This book assembles contributions from the most important research groups dealing with asexual evolution in eukaryotes. It is a milestone in research on parthenogenesis and will be useful to undergraduate as well as graduate students and to senior researchers in all fields of evolutionary biology, as the paradox of sex remains its queen of problems.


Sex is the queen of problems in evolutionary biology. Generations of researchers have investigated one of the last remaining evolutionary paradoxes: why sex exists at all. Given that sexual reproduction is costly from an evolutionary point of view, one could wonder why not all animals and plants reproduce asexually. Dozens of contemporary hypotheses attempt to explain the prevalence of sex and its advantages and predict the early extinction of fully asexual lineages. The major theme of this book is: what is the fate of animal and plant groups in which sex is lost? Initial chapters discuss theory behind asexual life: what major disadvantages do asexual groups have to face, what are the genetic and ecological consequences and what does this theory predict for more applied aspects of asexual life, for example in agricultural pests, diseases as well as in cultural crops such as grapes. Cases studies in many animals (focusing on both invertebrates and vertebrates) and plants reveal parallel, but also singularly novel adaptations to the absence of meiosis and syngamy. And last but not least, are asexuals really doomed to early extinction or do genuine ancient asexuals exist? This book assembles contributions from the most important research groups dealing with asexual evolution in eukaryotes. It is a milestone in research on parthenogenesis and will be useful to undergraduate as well as graduate students and to senior researchers in all fields of evolutionary biology, as the paradox of sex remains its queen of problems.

Foreword 4
References 6
Contents 7
Contributors 10
1 Asex and Evolution: A Very Large-Scale Overview 15
1.1 Eukaryote Reproduction and the Meiotic Cycle 15
1.2 Asex Is Often Associated with Polyploidy and Hybridity 6
1.3 Asex Can Have Many Different Immediate Causes 19
1.4 Asex Is the Outcome of a Darwinian Process with Special Properties 21
1.5 Asex Is Almost Always Associated with Some Sex 23
1.6 Most Asexuals Are Genetically Variable 24
1.7 Asexual Lineages Are Comparatively Short-Lived 26
1.8 The Lack of Recombination Gives Asexual Lineages a Long-Term Disadvantage 27
1.9 The Paradox of Asex 29
References 30
2 The Evolution of the Problem of Sex 34
2.1 Introduction 34
2.2 Darwin: The Effects of Cross-Fertilization 35
2.2.1 The Early Notebooks: Becoming Interested in the Significance of Sex 36
2.2.2 Sex and Variation 37
2.2.3 Sex Unites a Species 38
2.2.4 Cross-Fertilization: A Law of Nature 38
2.2.5 Sex and Hybrid Vigor 39
2.3 Weismann: The Significance of Sexual Reproduction in the Theory of Natural Selection 40
2.3.1 The Principles of Heredity 41
2.3.2 Heredity, Variability and Sex 42
2.3.3 The Significance of Sex, 1886 42
2.3.4 The Significance of Sex, 1891 43
2.3.5 Cyclical and Obligate Parthenogenesis 45
2.4 Fisher: The Contrast Between Sexual and Asexual Reproduction 46
2.4.1 Mendelism and Darwinism 47
2.4.2 The Adaptive Significance of Sex 48
2.4.3 Sex, Time and Levels of Selection 49
2.5 Maynard Smith: The Cost of Sex 50
2.5.1 The Evolutionary Synthesis and Appearing Complexities 51
2.5.2 Group Selection and Sex 52
2.5.3 The Fisher-Muller Model and a Changing Environment 52
2.5.4 The Problem of the Cost of Sex 53
2.5.5 Conceptual Framework 53
2.6 Discussion 54
References 58
3 Apomixis: Basics for Non-botanists 60
3.1 Introduction 60
3.2 Vegetative Reproduction in Plants is Not Apomixis 62
3.3 Apomixis Is a Modification of Sexual Reproduction 63
3.4 Types of Apomixis in Flowering Plants 64
3.5 Pseudogamy and Autonomous Endosperm Development 66
3.6 Phenotyping Apomixis 67
3.7 Facultative Apomixis 67
3.8 Causes of Apomixis 68
3.9 Most Apomictic Plants Are Hermaphrodites 69
3.10 Somatic Mutations 69
3.11 The Phylogenetic Distribution of Apomixis in the Flowering Plants 70
3.12 Constraints on the Evolution of Apomixis in Flowering Plants 70
3.13 Ancient Apomicts in Flowering Plants 71
3.14 Further Reading 72
3.15 Glossary 72
References 73
4 Cytology of Asexual Animals 76
4.1 The Importance of Cytology 76
4.2 Cytological Mechanisms of Animal Parthenogenesis 77
4.2.1 Automictic Parthenogenesis 77
4.2.1.1 Gamete Duplication 78
4.2.1.2 Terminal Fusion 79
4.2.1.3 Central Fusion 80
4.2.1.4 The First Polar Nucleus Fuses with the Nucleus of the Secondary Oocyte 81
4.2.1.5 Gonoid Thelytoky 82
4.2.1.6 Premeiotic Doubling 82
4.2.2 Apomictic Parthenogenesis 83
4.3 Evolutionary Consequences 84
4.4 Polyploidy in Association with Parthenogenesis 84
4.5 Conclusions 85
References 86
5 A Graphical Approach to Lineage Selection Between Clonals and Sexuals 88
5.1 Introduction 88
5.2 Costs and Benefits of Sexual vs Clonal Reproduction 89
5.2.1 Short-Term Costs of Sexual Reproduction 89
5.2.2 Long-Term Costs of Clonal Reproduction 92
5.3 Fundamental Benefits to Sex 94
5.3.1 Equilibrium Mutational Load in Clonal Lineages 94
5.3.2 Contrasting Equilibrium Mutational Load in Sexual and Clonal Lineages 96
5.3.3 A Graphical Depiction of Background-Trapping and the Accumulation of Favourable and Harmful Mutations 101
5.4 Clonal vs Sexual Lineages 105
5.5 Conclusions 108
References 108
6 Geographical Parthenogenesis: General Purpose Genotypes and Frozen Niche Variation 111
6.1 Introduction 111
6.1.1 Adaptation at the Margins 113
6.2 General Purpose Genotype (GPG) 114
6.2.1 Elevated Ploidy and Hybridity 116
6.2.2 Evidence for General Purpose Genotypes 117
6.3 Frozen Niche-Variation (FNV) 123
6.3.1 Evidence for Frozen Niche Variation 126
6.4 Evolution of Generalist Versus Specialist Clones 127
6.4.1 GPG and FNV Are Not Mutually Exclusive 133
6.5 Conclusions 134
References 134
7 Sex and the Red Queen 144
7.1 Sex and the Red Queen Introduction 144
7.2 Assumptions and Predictions of the Model 146
7.2.1 Population Genetics 147
7.2.2 Infection Dynamics 151
7.3 Does It Work? 152
7.3.1 Geographical Distribution of Sex and Outcrossing 152
7.3.2 Frequency of Sex vs Frequency of Infection 153
7.3.3 Susceptibility to Infection 154
7.3.4 Rare Advantage 155
7.3.5 Parasitic Tracking of Common Host Genotypes 157
7.3.6 Parasite Local Adaptation 158
7.3.7 Molecular Evolution in Disease Resistance Loci 160
7.4 Pluralism 161
7.4.1 The Red Queen and Pluralism 162
7.4.2 Empirical Tests 162
7.5 Conclusions 163
References 163
8 Geographical Parthenogenesis: Opportunities for Asexuality 171
8.1 Introduction 171
8.2 The Main Current Hypotheses 173
8.3 The Connection of Polyploidy, Hybridization and Asexuality 177
8.4 Hybridization and Polyploidy, and the Cost of Origins of Asexuality 178
8.5 Climatic Changes as Opportunities for Origins and Dispersal of Asexuality 180
8.6 Case Studies in Ranunculus 185
8.7 Suggestions for Future Research 189
8.8 Glossary 190
References 190
9 The Elusive Clone In Search of Its True Nature and Identity 197
9.1 Box 9.1: Definitions of Sex and Asex 197
9.1 What Are Clones? 198
9.2 A Brief History of Clonal Concepts 199
9.3 Germline Versus Soma: The Weismannian Doctrine Revisited 201
9.4 Clonal Concepts 203
9.5 Box 9.2: Brief Description of Extant Clonal Concepts 204
9.5 Validity of the Clonal Concepts 205
9.6 Conclusions 206
References 207
10 Asexual Speciation 211
10.1 The Importance of Asexual Species 211
10.2 General Theory of Speciation and Species in Asexuals 213
10.3 Criteria for Assigning Individuals to Species 216
10.3.1 The 4X Rule 216
10.3.2 Analysis of Branching Rates 218
10.4 Application to Bdelloid Rotifers 219
10.5 Application to Oribatid Mites 222
10.6 Predictions About Relative Speciation Rates in Sexuals and Parthenogens 222
10.7 Conclusions 224
References 225
11 Darwinulid Ostracods: Ancient Asexual Scandals or Scandalous Gossip? 227
11.1 Introduction 227
11.2 Box 11.1 Ostracoda 227
11.2 Ostracods in General 228
11.2 Ostracod Diversity 228
11.2 Reproductive Modes in Ostracods 229
11.2 Ecology of Darwinulidae 229
11.2 Life History of Darwinulidae 229
11.2 Demonstrating the Status of Long-Lived Asexuals 231
11.2.1 Recent Males 231
11.2.2 Fossil Males 234
11.2.3 Genetic Signatures of Ancient Asexuality: The Meselson-White Effect 236
11.2.4 Genomics: Transposons 238
11.2.5 Chromosomal Evidence: Aneuploidy 239
11.2.6 Ancient Asexual Status for Darwinulid Ostracods? 239
11.3 Ecological Strategies of Darwinulid Ostracods 240
11.3.1 GPG Versus FNV 240
11.3.2 Parasites or No Parasites? 241
11.3.3 Marginal Habitats and Long-Term Asexuality 242
11.3.4 Reduced Mutation Rates 242
11.3.5 Brood Selection or Enhanced Fecundity? 243
11.4 How Darwinulids Could Have Survived Without Sex for Millions of Years 244
11.5 What Remains to be Discovered 245
References 246
12 Parthenogenesis in Oribatid Mites (Acari, Oribatida): Evolution Without Sex 251
12.1 General Biological Aspects of Oribatid Mites 251
12.1.1 Overview 251
12.1.2 Geological Age 252
12.1.3 Population Density 253
12.1.4 Niche Differentiation and Feeding Biology 253
12.1.5 Functioning 255
12.2 Reproductive and Developmental Biology 256
12.2.1 General Aspects 256
12.2.2 Female System and Reproductive Strategies 256
12.2.3 Parthenogenesis 257
12.2.4 Endosymbiotic Bacteria 259
12.3 Phylogeny of Parthenogenetic Lineages 260
12.3.1 General Phylogeny 260
12.3.2 Radiation of Parthenogenetic Lineages 260
12.4 Glossary 263
References 263
13 Bdelloid Rotifers: Progress in Understanding the Success of an Evolutionary Scandal 268
13.1 Introduction 268
13.2 Evidence of Long-Term Asexuality in Bdelloidea 269
13.3 Environmental Adaptations in Bdelloidea 273
13.4 Anhydrobiosis 275
13.5 Ionizing Radiation and Desiccation 277
13.6 Genome Structure 278
13.7 Synthesis 282
References 284
14 Sex Loss in Monogonont Rotifers 289
14.1 Introduction 289
14.2 The Monogonont Life Cycle 290
14.3 The Timing of Sex 292
14.4 The Cost of Sex in Cyclically Parthenogenetic Life Cycles 293
14.5 Mechanisms of Sex Loss in Monogononts 295
14.6 Selection for Sex Loss 296
14.7 Dormancy and Sex 299
References 300
15 Cyclical Parthenogenesis in Daphnia : Sexual Versus Asexual Reproduction 303
15.1 Introduction 303
15.2 Cyclical Parthenogenesis and Its Effect on the Genetic Structure of Daphnia Populations 304
15.3 Reasons to Maintain Sexual Reproduction in Daphnia 306
15.3.1 Local Genetic Adaptation 306
15.3.2 Red Queen Dynamics 307
15.3.3 Deleterious Mutations 309
15.4 Evolution to Asexuality in Daphnia and Other Cladocerans 309
15.5 Why Switch to Asexual Reproduction When You Can Be a Cyclical Parthenogen? 312
15.5.1 Clonal Erosion and Inbreeding 313
15.5.2 Food Limitations and Time Stress 314
15.5.3 Genetic Slippage and Time Stress 315
15.5.4 Polyploidy and Hybrid Vigour 317
15.5.5 Contagious Asexuality: Selfish or Not? 317
15.6 Conclusions 318
References 318
16 Metasexual Stick Insects: Model Pathways to Losing Sex and Bringing It Back 325
16.1 Introduction 325
16.1.1 Asexuals and Sexuals 325
16.1.2 Parthenogenesis and Polyploidy 326
16.2 Sexual and Asexual Stick Insects 326
16.2.1 Bacillus (Latreille) 327
16.2.2 Leptynia Pantel and Pijnackeria Scali 335
16.3 Centrosome Dynamics and -Tubulin(s) in Stick Insects 339
16.4 Conclusions Are Stick Insects True Asexuals? 343
16.5 Glossary 346
References 347
17 Thelytoky in Hymenoptera with Venturia canescens and Leptopilina clavipes as Case Studies 354
17.1 Thelytoky in Hymenoptera 354
17.1.1 Introduction 354
17.1.2 Reproductive Modes 355
17.1.3 Types and Incidence of Thelytoky in Hymenoptera 355
17.1.4 Cytology and Genetic Consequences of Thelytoky 357
17.1.5 Thelytoky and Sex Determination 359
17.1.6 Evolutionary Consequences of Thelytoky 360
17.2 Case Study I: Venturia canescens 362
17.2.1 Introduction 362
17.2.2 Cytology and Genetics of Thelytoky 362
17.2.3 Thelytoky and Genetic Diversity 365
17.2.4 Coexistence of Arrhenotokous and Thelytokous Wasps 369
17.3 Case Study II: Leptopilina clavipes 371
17.3.1 Introduction 371
17.3.2 Cytology and Genetics of Thelytoky 372
17.3.3 Thelytoky and Genetic Diversity 372
17.3.4 Evolutionary Consequences of Thelytoky 374
17.4 Outlook 375
References 377
18 Sex in Parthenogenetic Planarians: Phylogenetic Relic or Evolutionary Resurrection? 383
18.1 The Uniqueness of Planarians 383
18.1.1 Flatworms in General 384
18.1.2 Freshwater Planarians 384
18.2 General Introduction to Schmidtea polychroa 386
18.2.1 General Characteristics 386
18.2.2 Reproductive Organs, Life Cycle and Development 386
18.2.3 Reproductive Types 387
18.2.4 Reproductive Behaviour 389
18.2.5 Phylogeographic Distribution and Population Genetics 390
18.3 Indications for a Cost of Sex 390
18.4 Indications for a Benefit of Sex 392
18.4.1 Accumulation of Deleterious Mutations 392
18.4.2 Parasites (Red Queen) 393
18.4.3 Pluralism 394
18.5 Maintenance of Parthenogenesis 394
18.5.1 Costs of Sperm-Dependent Parthenogenesis 395
18.5.2 Benefits of Sperm-Dependent Parthenogenesis 396
18.5.2.1 Gene Flow Between Sexuals and Parthenogens 396
18.5.2.2 Gene Flow Among Parthenogens 397
18.6 Evaluation: Fate of Parthenogenetic and Sexual Populations 398
18.7 Outlook 399
References 400
19 Sperm-Dependent Parthenogenesis and Hybridogenesis in Teleost Fishes 404
19.1 Introduction 405
19.1.1 Unisexual Reproduction 405
19.1.2 Gynogenesis 405
19.1.3 Paternal Leakage 406
19.1.4 Hybridogenesis 406
19.2 Poeciliidae (Livebearing Toothcarps) 408
19.2.1 Poecilia formosa 408
19.2.2 Poeciliopsis 414
19.3 Cyprinodontidae (Pupfishes) 415
19.3.1 Fundulus diaphanus-heteroclitus 415
19.4 Atherinopsidae (Neotropical Silversides) 415
19.4.1 Menidia clarkhubbsi 416
19.5 Cyprinidae (Minnows and Allies) 416
19.5.1 Carassius gibelio 417
19.5.2 Carassius langsdorfii 418
19.5.3 Phoxinus eos-neogaeus 418
19.5.4 Squalius alburnoides 420
19.6 Cobitidae (Loach Fishes) 423
19.6.1 Cobitis 423
19.6.2 Misgurnus anguillicaudatus 425
19.7 Conclusions 425
19.8 Glossary (for details: see also Fig. 19.1) 429
References 429
20 Masked Damage: Mutational Load in Hemiclonal Water Frogs 438
20.1 Hybridogenesis 438
20.2 The Special Case of Water Frogs 439
20.3 Hemiclonality A Predisposition to Mutation Accumulation 441
20.4 Mutational Load in Rana esculenta 442
20.5 Lost Load: Occasional Recombination Between Hemiclones 445
20.6 Lost Load Continued: Hybridogens as Vehicles for Gene Transfer 446
20.7 Open Questions and Outlook: Spontaneous Mutational Load in Natural Populations of Rana ridibunda 447
References 448
21 Lost Sex in the Reptiles: Constraints and Correlations 452
21.1 Introduction 452
21.2 The Phylogenetic Distribution and Genetic Correlates of Parthenogenesis in Reptiles 453
21.2.1 Phylogenetic Distribution 453
21.2.2 Hybridization, Polyploidy and Genetic Diversity 456
21.2.3 Dynamics of Hybrid Origins 459
21.3 The Geography and Ecology of Parthenogenesis in Reptiles 459
21.3.1 Geographical Tendencies 459
21.3.2 Patterns of Exclusion and Coexistence 462
21.3.3 Phenotypic Comparisons 463
21.3.4 Resistance to Parasites 464
21.4 Genetic Constraints and Opportunities in the Evolution of Reptile Parthenogenesis 465
21.4.1 General Constraints 465
21.4.2 Consequences and Opportunities 467
21.4.3 The Role of Hybridization 469
21.5 Selective Pressure on Parthenogenesis in Reptiles 470
21.6 Conclusions 472
References 473
22 An Apomixis-Genes View on Dandelions 480
22.1 Introduction 480
22.2 The Genetics of Apomixis in Taraxacum 481
22.3 Clones as Superorganisms 482
22.4 The Superstructure of Asexual Populations 483
22.5 Apomixis Genes are Older than Clones 486
22.6 A Mutation Load Linked to Apomixis-Genes 487
22.7 Recombination and Structure of Apomixis Chromosomal Regions 489
22.8 Why are Apomicts Not Diploid? 490
22.9 Conclusions 493
22.10 Appendix 494
References 496
23 Allelic Sequence Divergence in the Apomictic Boechera holboellii Complex 499
23.1 Introduction 499
23.2 Microsatellite Variation 502
23.2.1 Variation in the Repeat Regions 507
23.2.2 DNA Sequence Variation 508
23.3 Allelic Sequence Divergence (ASD) in Microsatellite Flanking Regions 508
23.4 Microsatellite Evolution in Sexual and Apomictic Lineages 510
23.5 Allelic Variation and Genome Duplication 513
23.6 Allelic Sequence Divergence (ASD) 514
23.7 Conclusions 516
References 517
24 Asexual Reproduction in Infectious Diseases 521
24.1 Introduction 521
24.2 Infectious Diseases in the Living World 522
24.3 Clonality in Eukaryotic Infectious Agents 522
24.4 Studying Populations of Clonal Parasites 528
24.4.1 I Parasites 530
24.4.2 S parasites 531
24.4.3 A Parasites 532
24.5 Discussion 533
References 534
25 Whats in a Clone: The Rapid Evolution of Aphid Asexual Lineages in Relation to Geography, Host Plant Adaptation and Resistance to Pesticides 538
25.1 Introduction 538
25.2 The Nature of the Clone 540
25.2.1 Evidence for Variation Within the Clonal Genotype 540
25.2.2 Evidence for Variation Between Clonal Lineages 541
25.2.3 Evidence of Higher Level Lineage Evolution, Especially in Relation to the Host Plant 543
25.3 Clonal Persistence 544
25.4 Aerial Displacements 546
25.5 Geographic Populations 548
25.6 Clonal Selection 549
25.7 Concluding Remarks 551
25.8 Glossary 552
References 553
26 Epigenetic Mechanisms in Mammals and Their Effects on Cloning Procedures 561
26.1 Introduction 561
26.2 Is Cloning in Mammals Compatible with Normal Development? 563
26.3 Why is SCNT So Unsuccessful? 563
26.4 Epigenetic Inequality Between the Parental Genomes 565
26.5 Does Cloning Affect the Parental Epigenetic Information? 567
26.6 Strategies to Improve Cloning 570
26.7 Outlook 574
26.8 Glossary 576
References 576
27 Grapevine ( Vitis ssp.): Example of Clonal Reproduction in Agricultural Important Plants 582
27.1 Introduction 582
27.2 Clonality in Grapevine 584
27.2.1 Clonal Selection -- the Art of Bringing Clonal Variation to the Fields 584
27.2.2 Clonal Selection: An Example from V. vinifera cv. Pinot Noir 585
27.3 Sources of Clonal Variation in Grapevine Explored in Viticulture 586
27.3.1 Clonal Variation by Random Mutation 588
27.3.2 Clonal Variation by Transposition 589
27.3.3 Clonal Variation by Chimerism 591
27.4 Sex is Not Lost in Grapevine, But Rare 592
27.5 Advantages of Grapevine Clones 593
27.5.1 Do Grapevine Clones Make Wines Better? 593
27.6 Conclusions 594
27.7 Glossary 595
References 595
Index 600

Erscheint lt. Verlag 22.9.2009
Zusatzinfo XVII, 615 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Naturwissenschaften Biologie Botanik
Naturwissenschaften Biologie Evolution
Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Biologie Zoologie
Technik
Schlagworte Adaptation • Charles Darwin • Darwin • Ecology • eukaryote • Evolution • evolutionary biology • Genetics • Genotyp • Mutation • Parthogenesis
ISBN-10 90-481-2770-X / 904812770X
ISBN-13 978-90-481-2770-2 / 9789048127702
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
CHF 68,35
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
CHF 68,35