Nicht aus der Schweiz? Besuchen Sie lehmanns.de

The Plant Plasma Membrane (eBook)

eBook Download: PDF
2010 | 2011
XIV, 494 Seiten
Springer Berlin (Verlag)
978-3-642-13431-9 (ISBN)

Lese- und Medienproben

The Plant Plasma Membrane -
Systemvoraussetzungen
213,99 inkl. MwSt
(CHF 208,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
In plant cells, the plasma membrane is a highly elaborated structure that functions as the point of exchange with adjoining cells, cell walls and the external environment. Transactions at the plasma membrane include uptake of water and essential mineral nutrients, gas exchange, movement of metabolites, transport and perception of signaling molecules, and initial responses to external biota. Selective transporters control the rates and direction of small molecule movement across the membrane barrier and manipulate the turgor that maintains plant form and drives plant cell expansion. The plasma membrane provides an environment in which molecular and macromolecular interactions are enhanced by the clustering of proteins in oligimeric complexes for more efficient retention of biosynthetic intermediates, and by the anchoring of protein complexes to promote regulatory interactions. The coupling of signal perception at the membrane surface with intracellular second messengers also involves transduction across the plasma membrane. Finally, the generation and ordering of the external cell walls involves processes mediated at the plant cell surface by the plasma membrane. This volume is divided into three sections. The first section describes the basic mechanisms that regulate all plasma membrane functions. The second describes plasma membrane transport activity. The final section of the book describes signaling interactions at the plasma membrane. These topics are given a unique treatment in this volume, as the discussions are restricted to the plasma membrane itself as much as possible. A more complete knowledge of the plasma membrane's structure and function is essential to current efforts to increase the sustainability of agricultural production of food, fiber, and fuel crops.

Editors 6
Preface 8
Contents 12
Section I Plasma Membrane Structure and Basic Functions 16
Lipids of the Plant Plasma Membrane 17
1 Biochemical Analysis of Plant Plasma Membrane 18
1.1 Isolation of Highly Purified Plasma Membrane Fractions from Plant Tissues 18
1.2 Lipid Content of Plant Plasma Membrane 18
1.2.1 Glycerolipids 20
Structural Glycerolipids 22
Phosphoinositides 24
PI(3)P and PI 3-Kinase 24
PI(4)P and PI 4-Kinase 26
PI(5)P 27
PI(4,5)P2 and PIP Kinase 27
Phosphatidic Acid/Diacylglycerol Pyrophosphate 27
1.2.2 Sphingolipids 27
1.2.3 Plant Sterols 29
1.3 Asymmetrical Distribution of Lipids Across the Plasma Membrane 32
2 Evidence for Membrane Domains in the Plant Plasma Membrane 33
2.1 Organization of Lipids Within the Plasma Membrane: The Concept of Membrane Rafts 33
2.2 Characterization of Detergent-Insoluble Plasma Membranes from Plants 35
2.2.1 Sterols 35
2.2.2 Sphingolipids 36
2.2.3 Phospholipids 36
2.2.4 Protein Content 37
2.3 Visualization of Rafts in Plant Plasma Membrane 38
2.4 Putative Roles of Plasma Membrane Raft in Plant Biology 38
3 Conclusions 40
References 40
Plasma Membrane Protein Trafficking 45
1 Types of Trafficking at the Plasma Membrane 45
2 Exocytosis/Secretion/Anterograde Trafficking 47
2.1 Clathrin-Coated Vesicles 48
2.2 Adaptins and Adaptor Protein Complexes 49
2.3 Vesicle Fusion with the Plasma Membrane 50
2.4 Exocyst 52
2.5 Secretory Vesicle Cluster 52
2.6 The Microtubule-Associated Cellulose Synthase Compartment 53
3 Endocytosis/Retrograde Trafficking 53
3.1 Clathrin-Mediated Endocytosis 54
3.2 Receptor-Mediated Endocytosis 55
3.3 Sorting and the Return Trip to the PM 57
3.4 Endosomes and Multivesicular Bodies 58
4 Role of the Cytoskeleton in Plasma Membrane Protein Trafficking 59
4.1 Actin 59
4.2 Microtubules 60
5 Models of Trafficking 60
5.1 Constitutive 62
5.2 Induced 62
5.3 Specialized 63
6 Concluding Remarks 64
References 64
The Plasma Membrane and the Cell Wall 71
1 Introduction 71
2 Primary and Secondary Cell Walls 72
2.1 Primary Cell Walls 74
2.2 Secondary Cell Walls 75
3 Golgi-Associated Cell Wall Metabolism 76
4 Apoplastic Components and Processes 78
4.1 Expansins and Glycosyl Hydrolases 78
4.2 Nonenzymatic Apoplastic Proteins 79
4.3 Glycosylphosphatidylinositol Anchors 80
5 Callose 81
6 Cellulose 82
6.1 The Cellulose Synthase A Complex 82
6.2 Structural Organization of the CESA Proteins 83
6.3 Cellulose Synthesis 84
6.4 Mutational Analyses of Cell Wall Formation 84
6.4.1 Mutations Affecting Cellulose Formation in the Primary Cell Wall 84
6.4.2 Mutations Affecting Secondary Cell Wall Cellulose 86
6.5 Inhibitory Drugs 87
7 Cell Wall Signaling 87
7.1 Receptor-Like Kinases 88
7.2 Wall-Associated Kinases 88
8 Outlook 90
References 90
Plasmodesmata and Non-Cell-Autonomous Signaling in Plants 100
1 Introduction 101
2 Plasmodesmata Are Membrane-Lined Cytoplasmic Channels 102
3 Formation of Plasmodesmata 104
3.1 Primary Plasmodesmata 104
3.2 Secondary and Modified Plasmodesmata 104
4 Plasmodesmata in Lower Plants 106
4.1 Brown Algae: Laminaria 107
4.2 Green Algae: Chara 107
4.3 Bryophytes 108
5 Proteins Localized at or Near Plasmodesmata 108
6 PD Mediate Macromolecular Trafficking 109
6.1 KN1 Moves Through Plasmodesmata to Act Non-Cell-Autonomously 110
6.2 CPC and SHR 111
6.3 Mechanism of PD Trafficking 113
7 Tunneling Nanotubes: Animal Analog of Plasmodesmata? 114
8 Concluding Remarks 115
References 116
Posttranslational Modifications of Plasma Membrane Proteins and Their Implications for Plant Growth and Development 121
1 Control of Protein Targeting via Covalent Protein Modifications 121
1.1 Myristoylation 122
1.2 Prenylation 122
1.3 S-Acylation 124
1.4 Lipid Modification Targets 125
1.5 GPI Anchors 127
1.6 GPI-Anchored Proteins 129
1.7 Phosphorylation as a Determinant for Membrane Protein Targeting 132
2 Concluding Remarks 134
References 134
Section II Plasma Membrane Transporters 141
Functional Classification of Plant Plasma Membrane Transporters 142
1 Introduction into Plasma Membrane Transport 142
2 Types of Membrane Transport 143
2.1 Passive Transport 143
2.2 Active Transport 145
3 Passive Transport Through the PM 145
3.1 Channels 146
3.1.1 Anion Channels 146
3.1.2 Aluminum-Activated Malate Transporters 147
3.1.3 Slow Anion Channel-Associated 1 147
4 Cation Channels 148
4.1 K+ Channels 148
4.1.1 Shaker-Type K+ Channels 148
Inward-Rectifying Shaker-Type Channels 148
Outward-Rectifying Channels 149
Tandem Pore K+ Channel 150
High-Affinity K+ Transporters 150
KUP/HAK/KT Permeases 151
5 Ca2+ Channels 151
5.1 Cyclic Nucleotide-Gated Channels 152
5.2 GluR (Ionotropic Glutamate Receptor Channel Homologs) 152
5.3 Annexins and Ca2+ Transport 152
5.4 Voltage-Dependent and Mechanosensitive Ca2+ Channels 153
6 Pumps 153
6.1 P-Type ATPases 153
6.1.1 P3A-Type H+-ATPase 153
6.1.2 P2B-(Ca2+) ATPase 154
6.1.3 P1B-Zn2+-ATPase 154
6.2 H+-Pyrophosphorylase 154
6.3 ABC Transporters 155
6.3.1 Phytohormone Transport and ABC Transporters 156
7 The PIN-FORMED (PIN) Transporter Family 157
8 Amino Acid/Auxin Permease Transporters 158
8.1 Amino Acid-Polyamine-Choline Transporters 158
8.2 Amino Acid Transporter Family 158
8.2.1 Amino Acid Permeases 159
8.2.2 AAAP Transporters Involved in Auxin Transport 159
8.2.3 Lysine/Histidine Transporters 160
8.2.4 Proline Transporters 160
8.2.5 GABA Transporters 160
8.2.6 Aromatic and Neutral Amino Acid Transporters 161
8.3 Peptide Transporters 161
8.3.1 PTR/NRT1 Peptide Transporters 161
8.3.2 Oligopeptide Transporter 162
8.4 Ammonium Transporters 162
9 Sugar Transporters 163
9.1 Monosaccharide Transporters 163
9.1.1 Sugar Transport Protein 164
9.1.2 Inositol Transporter 164
9.1.3 Polyol Transporter 164
9.2 Sucrose Transporter 164
10 Purine Permease 165
11 Aquaporins 166
12 Nitrate Transporter 168
13 Sulfate Transporter 169
13.1 SulP Gene Family 169
14 Metal Transporter 170
14.1 Iron Transporter 170
14.1.1 ZIP Transporters 171
14.1.2 Natural Resistance-Associated Macrophage Protein 171
14.1.3 Copper Transporter 172
14.1.4 SLC40 Transporters 172
14.2 Chelation-Based Strategy of Iron Uptake 172
14.2.1 Yellow Stripe1-Like Transporter 173
15 Phosphate Transporter 173
16 Conclusion 174
References 174
Plasma Membrane ATPases 188
1 Introduction 188
2 Plasma Membrane H+-ATPases (P3-ATPases) 190
3 Regulation of PM P-Type H+-ATPases 193
4 Plasma Membrane Ca2+-ATPases (P2B-ATPases) 195
5 Plasma Membrane Zn2+-ATPases (P1B-ATPases) 196
6 Additional Plasma Membrane P-Type ATPases 197
References 198
Physiological Roles for the PIP Family of Plant Aquaporins 204
1 Introduction 204
2 Aquaporin Substrates 206
2.1 PIPs: Mostly Water Channels and Mostly on the PM and Trafficking Vesicles 207
2.2 Regulation of PIP AQP Expression and Activity 208
2.2.1 Phosphorylation 209
2.2.2 Quaternary Structure 210
2.2.3 Regulation by the Cellular Environment 210
3 Subcellular Distribution and Protein Trafficking 211
4 Multiple Physiological Roles for PIP Aquaporins 212
4.1 The Role of PIPs in Seed Germination 218
4.2 PIPs in Elongation Growth and Differentiation 219
4.3 A Role for PIPs in Programmed Cell Death and Plant Microbe Interactions 220
4.4 Roles of PIPs in Adaptation to Environmental Challenges 222
5 Perspectives 225
References 226
The Role of Plasma Membrane Nitrogen Transporters in Nitrogen Acquisition and Utilization 234
1 Introduction 234
2 Nitrate Transporters 235
2.1 Nitrate Uptake 236
2.2 Nitrate Xylem Loading 238
2.3 Nitrate Remobilization 239
2.4 Nitrate and Embryo Development 239
3 Ammonium Transporters 239
3.1 Ammonium Uptake 240
3.2 AtAMT2.1 and AtAMT1.4 241
4 Amino Acid Transporters 241
4.1 Amino Acid Uptake 242
4.2 Long Distance Transport of Amino Acids 243
4.3 Amino Acid Transport and the Embryo 243
5 Conclusions 244
References 244
Plant Plasma Membrane and Phosphate Deprivation 248
1 Introduction 248
2 Plasma Membrane Components Modulated by Phosphate Availability 249
2.1 Glycerolipids 249
2.1.1 Lipid Composition of Plasma Membrane 249
2.1.2 Phosphate Deprivation Promotes Phospholipid Recycling and Digalactolipid Accumulation in Plasma Membrane 250
3 Transporters 252
3.1 Phosphate Transporters 252
3.2 Metal Transporters 254
4 Timing and Regulation of Phosphate Deficiency-Related Modifications Affecting the Plasma Membrane 255
5 Conclusion 258
References 258
Biology of Plant Potassium Channels 263
1 Introduction 263
2 Milestones in Plant Potassium Channel Research 265
3 Stomatal Movement Is Based on the Reversible Expansion of Guard Cell Pairs 271
4 Growth Results from Irreversible Cell Expansion 273
5 Polar Growth is Best Studied in Root Hairs and Pollen Tubes 274
5.1 Root Hairs 274
5.2 Pollen Tubes 275
6 Long Distance K+ Transport in Plants 276
7 Potassium Channels Control Cell Cycle Progression 276
8 Vacuolar K+ Channels 277
9 Outlook 278
References 278
Mechanism and Evolution of Calcium Transport Across the Plant Plasma Membrane 285
1 Introduction 285
2 PM Ca2+ Transport Pathways 286
2.1 Ca2+ Influx Channels 287
2.1.1 Ca2+ Influx by Nonselective Cation Channels 287
2.1.2 Gene Candidates for Plant PM Ca2+-Permeable Channels 288
2.2 Ca2+ Efflux Transporters 289
2.2.1 Ca2+-ATPases 289
2.2.2 Ca2+/H+ ExchangersCa2+/H+ exchangers (CAX) 291
3 Evolution of PM Ca2+ Transporters in Plants 291
3.1 PM Ca2+ Transport in Lower Plants 291
3.2 Analysis of PM Ca2+ Transport by Comparative Genomics 293
4 Conclusions 295
References 295
Sulfate Transport 300
1 Introduction 300
1.1 Physiology and Energetics of Sulfate Uptake in Plants 301
1.2 Efflux Across the Plasma Membrane 302
2 The SulP Gene Family 302
2.1 Structure of the Sulfate Transporters 305
2.2 Mechanisms of Regulation 306
3 Perspective 307
References 307
Metal Transport 311
1 Introduction 311
2 Iron 312
2.1 Chelation Strategy for Iron Uptake 313
2.1.1 Yellow Stripe and Yellow Stripe-Like Transporters 313
2.2 Reduction Strategy for Iron Uptake 316
3 ZIP Family of Metal Transporters 317
3.1 Structure and Function of ZIP Transporters 318
3.2 ZIP Transporters in Plants 318
4 NRAMP Family of Metal Transporters 320
4.1 P1B-ATPase Family of Metal Transporters 322
5 COPT Family of Metal Transporters 325
6 CDF Family of Metal Transporters 326
7 SLC40 Family of Metal Transporters 327
8 Cation Selectivity 328
9 Conclusion 330
References 330
Organic Carbon and Nitrogen Transporters 339
1 Introduction 339
2 Organic Nitrogen Transporters 341
2.1 Amino Acid Transporters 341
2.1.1 Amino Acid Transporter Family 342
2.1.2 Amino Acid-Polyamine-Choline Transporter Family 343
2.2 Peptide Transporters 344
2.2.1 Peptide Transporter/Nitrate Transporter 1 Family 344
2.2.2 Oligopeptide Transporter Family 345
3 Sugar Transporters 346
3.1 Monosaccharide Transporters 346
3.1.1 Sugar Transport Protein Subfamily 346
3.1.2 Polyol Transporter Subfamily 348
3.1.3 Inositol Transporter Subfamily 348
3.1.4 Vacuolar Glucose Transporter-Like and Tonoplast Monosaccharide Transporter Subfamilies 348
3.2 Sucrose Transporters (SUTs or SUCs) 349
3.2.1 Clade I (SUT1/SUC2) 349
3.2.2 Clade II (SUT4) 350
3.2.3 Clade III (SUT2) 350
4 Conclusions 351
References 351
ABC Transporters and Their Function at the Plasma Membrane 361
1 ABC Transporters and Their Function 361
2 Structure and Evolution of Plant Plasma Membrane Transporters 362
3 The Nucleotide-Binding Fold: The Motor That Drives ABC Transport 364
4 The Two Halves of Full-Length ABC Transporters Are Similar But Not Identical 365
5 The Transmembrane Domain Forms the Pore and Functions as the Substrate Acceptor Site 366
6 The Transmembrane Helices Determine the Shape of the Pore 366
7 The Inner Lumen of the Transmembrane Barrel Determines Substrate Translocation 367
8 Substrate Translocation Mechanism Within the Transmembrane Domain 369
9 Membrane Insertion 369
10 Membrane Microdomains 370
11 Plant Plasma Membrane ABC Transporters: Two Subfamilies and Their Functions 371
11.1 ABCBs: Transport of Hormones, Organic Acids, and Alkaloids 371
11.2 Full-Length ABCG/PDR Proteins: At the Line of Plant Defense 376
11.3 ABCG/WBC Half-Transporters 377
12 Conclusions 378
References 379
Hormone Transport 386
1 Introduction 386
2 Known Transport Proteins for Phytohormones 387
2.1 Transporters for Auxins 387
2.2 Cytokinin Transporters 391
2.3 Abscisic Acid Transporters 392
2.4 Brassinosteroid Transport 393
2.5 Heterologous Expression of Phytohormone Transporters 393
2.6 Functional Characterization of Auxin Transporters 395
2.7 Computational and Mathematical Approaches to Understanding Phytohormone Transport 397
3 Conclusion 399
References 399
Section III Signal Transduction at the Plasma Membrane 405
Plant Hormone Perception at the Plasma Membrane 406
1 Introduction 406
2 Brassinosteroids 407
2.1 The PM-Localized Components of BR Signaling 409
2.2 The Cytosolic and Nuclear Components of BR Signaling 411
2.3 Proposed Mechanism of the Action of BR Perception and Signal Transduction 412
3 Cytokinin 413
3.1 The PM-Localized Components of Cytokinin Signaling 414
3.2 The Cytosolic and Nuclear Components of Cytokinin Signaling 416
3.2.1 The Phosphotransfer Proteins 416
3.2.2 The Response Regulators 416
3.3 Proposed Mechanism of Action of Cytokinin Perception and Signal Transduction 418
4 Abscisic Acid 418
5 Conclusion 421
References 422
Light Sensing at the Plasma Membrane 428
1 Phototropin Blue-Light Receptors 428
1.1 Phototropin Activity and Biological Functions 428
1.2 LOV Domains and Blue Light Sensing 430
1.3 Phototropin Activation and Phosphorylation 431
1.4 Phototropin Signaling at the PM 431
2 Additional Plant Blue Light Receptors 433
3 Phytochrome Red/Far-Red Light Receptors 433
4 UV-B and Green Light 434
5 Conclusions 435
References 436
The Hull of Fame: Lipid Signaling in the Plasma Membrane 442
1 The Role of the Plasma Membrane in Cell Signaling 442
1.1 The Phosphoinositide Pathway 443
2 PIs and the Plasma Membrane 444
2.1 Interaction of Soluble PI-Pathway Enzymes with the Plasma Membrane 445
3 PIs and the Regulation of Tip Growth 446
4 PI Control of Ion Channels 448
5 PIs and Plant Stress Responses 449
6 Sphingolipids in Plant Signaling 450
7 Conclusions 453
References 454
Plasma Membrane and Abiotic Stress 461
1 Plasma Membrane Abiotic Stress Sensing 461
2 PM Targets of Abiotic Stress Signals 464
3 Stomatal Guard Cells and Stress Responses at the PM 466
4 Membrane-Bound Transcription Factor and Response to Abiotic Stress 467
5 Other Posttranslational Regulation of PM Proteins 469
6 Abiotic Stress and Effects on PM Integrity 470
7 Conclusion 470
References 470
The Role of the Plant Plasma Membrane in Microbial Sensing and Innate Immunity 475
1 Introduction 475
2 Signals Activating Plant Immunity-Associated Defenses 476
2.1 Pathogen-Associated Molecular Patterns 476
2.2 Damage-Associated Molecular Patterns 478
2.3 Microbial Toxins as Triggers of Plant Defenses 479
3 Plasma Membrane Pattern Recognition Receptors in Plant Immunity 480
4 Auxiliary Factors Mediating Pattern Recognition Receptor Function 481
5 Suppression of PRR Function: A Major Virulence Strategy of Phytopathogenic Bacteria 482
References 484
Index 488

Erscheint lt. Verlag 11.11.2010
Reihe/Serie Plant Cell Monographs
Plant Cell Monographs
Zusatzinfo XIV, 494 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Naturwissenschaften Biologie Botanik
Technik
Schlagworte cell surface signaling • plant cell wall interactions • plant intercellular transport • plant membrane structure
ISBN-10 3-642-13431-9 / 3642134319
ISBN-13 978-3-642-13431-9 / 9783642134319
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
CHF 68,35
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
CHF 68,35