Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Music Data Mining -

Music Data Mining

Buch | Hardcover
384 Seiten
2011
Crc Press Inc (Verlag)
978-1-4398-3552-4 (ISBN)
CHF 149,00 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The research area of music information retrieval has gradually evolved to address the challenges of effectively accessing and interacting large collections of music and associated data, such as styles, artists, lyrics, and reviews. Bringing together an interdisciplinary array of top researchers, Music Data Mining presents a variety of approaches to successfully employ data mining techniques for the purpose of music processing.

The book first covers music data mining tasks and algorithms and audio feature extraction, providing a framework for subsequent chapters. With a focus on data classification, it then describes a computational approach inspired by human auditory perception and examines instrument recognition, the effects of music on moods and emotions, and the connections between power laws and music aesthetics. Given the importance of social aspects in understanding music, the text addresses the use of the Web and peer-to-peer networks for both music data mining and evaluating music mining tasks and algorithms. It also discusses indexing with tags and explains how data can be collected using online human computation games. The final chapters offer a balanced exploration of hit song science as well as a look at symbolic musicology and data mining.

The multifaceted nature of music information often requires algorithms and systems using sophisticated signal processing and machine learning techniques to better extract useful information. An excellent introduction to the field, this volume presents state-of-the-art techniques in music data mining and information retrieval to create novel ways of interacting with large music collections.

Tao Li, Mitsunori Ogihara, George Tzanetakis

FUNDAMENTAL TOPICS: Music Data Mining: An Introduction. Audio Feature Extraction. CLASSIFICATION: Auditory Sparse Coding. Instrument Recognition. Mood and Emotional Classification. Zipf’s Law, Power Laws and Music Aesthetics. SOCIAL ASPECTS OF MUSIC DATA MINING: Web- and Community-Based Music Information Extraction. Indexing Music with Tags. Human Computation for Music Classification. ADVANCED TOPICS: Hit Song Science. Symbolic Data Mining in Musicology. Index.

Erscheint lt. Verlag 12.8.2011
Reihe/Serie Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
Zusatzinfo 42 Tables, black and white; 64 Illustrations, black and white
Verlagsort Bosa Roca
Sprache englisch
Maße 156 x 234 mm
Gewicht 657 g
Themenwelt Kunst / Musik / Theater Musik
Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Theorie / Studium
Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 1-4398-3552-7 / 1439835527
ISBN-13 978-1-4398-3552-4 / 9781439835524
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85