Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Manifolds and Modular Forms

Buch | Softcover
XI, 212 Seiten
1994 | 2nded. 1994
Vieweg & Teubner (Verlag)
978-3-528-16414-0 (ISBN)

Lese- und Medienproben

Manifolds and Modular Forms - Friedrich Hirzebruch, Thomas Berger, Rainer Jung
CHF 74,85 inkl. MwSt
During the winter term 1987/88 I gave a course at the University of Bonn under the title "Manifolds and Modular Forms". I wanted to develop the theory of "Elliptic Genera" and to learn it myself on this occasion. This theory due to Ochanine, Landweber, Stong and others was relatively new at the time. The word "genus" is meant in the sense of my book "Neue Topologische Methoden in der Algebraischen Geometrie" published in 1956: A genus is a homomorphism of the Thorn cobordism ring of oriented compact manifolds into the complex numbers. Fundamental examples are the signature and the A-genus. The A-genus equals the arithmetic genus of an algebraic manifold, provided the first Chern class of the manifold vanishes. According to Atiyah and Singer it is the index of the Dirac operator on a compact Riemannian manifold with spin structure. The elliptic genera depend on a parameter. For special values of the parameter one obtains the signature and the A-genus. Indeed, the universal elliptic genus can be regarded as a modular form with respect to the subgroup r (2) of the modular group; the two cusps 0 giving the signature and the A-genus. Witten and other physicists have given motivations for the elliptic genus by theoretical physics using the free loop space of a manifold.

1 Background.- 2 Elliptic genera.- 3 A universal addition theorem for genera.- 4 Multiplicativity in fibre bundles.- 5 The Atiyah-Singer index theorem.- 6 Twisted operators and genera.- 7 Riemann-Roch and elliptic genera in the complex case.- 8 A divisibility theorem for elliptic genera.- Appendix I Modular forms.- 1 Fundamental concepts.- 2 Examples of modular forms.- 3 The Weierstraß ?-function as a Jacobi form.- 4 Some special functions and modular forms.- 5 Theta functions, divisors, and elliptic functions.- Appendix II The Dirac operator.- 1 The solution.- 2 The problem.- 1 Zolotarev polynomials.- 2 Interpretation as an algebraic curve.- 3 The differential equation - revisited.- 4 Modular interpretation of Zolotarev polynomials.- 5 The embedding of the modular curve.- 6 Applications to elliptic genera.- Symbols.

Erscheint lt. Verlag 1.1.1994
Reihe/Serie Aspects of Mathematics
Übersetzer Peter S. Translated by Landweber
Zusatzinfo XI, 212 p.
Verlagsort Wiesbaden
Sprache englisch
Maße 162 x 229 mm
Gewicht 500 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
Schlagworte Algebra • Algebraische Topologie • Elliptische Funktion • manifold • Mannigfaltigkeit (Mathematik) • Material • Modulform • SIGNATUR
ISBN-10 3-528-16414-X / 352816414X
ISBN-13 978-3-528-16414-0 / 9783528164140
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
CHF 58,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 153,90