Domain Adaptation in Computer Vision Applications
Springer International Publishing (Verlag)
978-3-319-86383-2 (ISBN)
This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning.
Dr. Gabriela Csurka is a Senior Scientist in the Computer Vision Team at Naver Labs Europe, Meylan, France.
A Comprehensive Survey on Domain Adaptation for Visual Applications.- A Deeper Look at Dataset Bias.- Part I: Shallow Domain Adaptation Methods.- Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation.- Unsupervised Domain Adaptation based on Subspace Alignment.- Learning Domain Invariant Embeddings by Matching Distributions.- Adaptive Transductive Transfer Machines: A Pipeline for Unsupervised Domain Adaptation.- What To Do When the Access to the Source Data is Constrained?.- Part II: Deep Domain Adaptation Methods.- Correlation Alignment for Unsupervised Domain Adaptation.- Simultaneous Deep Transfer Across Domains and Tasks.- Domain-Adversarial Training of Neural Networks.- Part III: Beyond Image Classification.- Unsupervised Fisher Vector Adaptation for Re-Identification.- Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA.- From Virtual to Real World Visual Perception using Domain Adaptation - The DPM as Example.- Generalizing Semantic Part Detectors Across Domains.- Part IV: Beyond Domain Adaptation: Unifying Perspectives.- A Multi-Source Domain Generalization Approach to Visual Attribute Detection.- Unifying Multi-Domain Multi-Task Learning: Tensor and Neural Network Perspectives.
Erscheinungsdatum | 02.10.2018 |
---|---|
Reihe/Serie | Advances in Computer Vision and Pattern Recognition |
Zusatzinfo | X, 344 p. 107 illus., 101 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 6035 g |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Sozialwissenschaften | |
Schlagworte | computer vision • data analytics • Deep learning • Domain-Adversarial Training • Domain Shift • Feature Transformation • Geodesic flow • Grassman Manifold • image categorization • Landmark Selection • Marginalized Denoising Autoencoders • Maximum Mean Discrepancy • pattern recognition • Subspace Alignment • subspace learning • Transductive Transfer Learning • Unsupervised Domain Adaptation • Visual Applications |
ISBN-10 | 3-319-86383-5 / 3319863835 |
ISBN-13 | 978-3-319-86383-2 / 9783319863832 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich