Nicht aus der Schweiz? Besuchen Sie lehmanns.de
The Enterprise Big Data Framework - Jan-Willem Middelburg

The Enterprise Big Data Framework

Building Critical Capabilities to Win in the Data Economy
Buch | Hardcover
496 Seiten
2023
Kogan Page Ltd (Verlag)
978-1-3986-0174-1 (ISBN)
CHF 287,95 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Transform enterprise Big Data into valuable assets with this comprehensive guide to data analysis, data engineering, algorithm design and data architecture.
Businesses who can make sense of the huge influx and complexity of data will be the big winners in the information economy.

This comprehensive guide covers all the aspects of transforming enterprise data into value, from the initial set-up of a big data strategy, towards algorithms, architecture and data governance processes. Using a vendor-independent approach, The Enterprise Big Data Framework offers practical advice on how to develop data-driven decision making, detailed data analysis and data engineering techniques.

With a focus on practical implementation, The Enterprise Big Data Framework introduces six critical capabilities that every organization can use to become data driven. With sections on strategy formulation, data governance, sustainability, architecture and algorithms, this guide provides a comprehensive overview of best practices organizations can leverage to win in the data economy. Throughout the different sections, the book also introduces a capability model that every organization can use to measure progress. Endorsed by leading accreditation and examination institute AMPG International, this book is required reading for the Enterprise Big Data Certifications, which aim to develop excellence in big data practices across the globe. Online resources include sample data for practice purposes.

Jan-Willem Middelburg is a Dutch entrepreneur and author with a passion for technology and innovation. He is the CEO and co-founder of Cybiant, a global technology that company that helps to create a more sustainable world through analytics, big data and automation. He is also President and Chief Examiner of the Enterprise Big Data Framework, an independent organization dedicated to upskilling individuals with expertise in Big Data. In partnership with APMG-International, the Enterprise Big Data Framework offers vendor-neutral certifications for individuals.

Section - ONE: Introduction to Big Data;


Chapter - 01: Introduction to Big Data;
Chapter - 02: The Big Data framework;
Chapter - 03: Big Data strategy;
Chapter - 04: Big Data architecture;
Chapter - 05: Big Data algorithms;
Chapter - 06: Big Data processes;
Chapter - 07: Big Data functions;
Chapter - 08: Artificial intelligence;


Section - TWO: Enterprise Big Data analysis;


Chapter - 09: Introduction to Big Data analysis;
Chapter - 10: Defining the business objective;
Chapter - 11: Data ingestion – importing and reading data sets;
Chapter - 12: Data preparation – cleaning and wrangling data;
Chapter - 13: Data analysis – model building;
Chapter - 14: Data presentation;


Section - THREE: Enterprise Big Data engineering;


Chapter - 15: Introduction to Big Data engineering;
Chapter - 16: Data modelling;
Chapter - 17: Constructing the data lake;
Chapter - 18: Building an enterprise Big Data warehouse;
Chapter - 19: Design and structure of Big Data pipelines;
Chapter - 20: Managing data pipelines;
Chapter - 21: Cluster technology;


Section - FOUR: enterprise Big Data algorithm design;


Chapter - 22: Introduction to Big Data algorithm design;
Chapter - 23: Algorithm design – fundamental concepts;
Chapter - 24: Statistical machine learning algorithms;
Chapter - 25: The data science roadmap;
Chapter - 26: Programming languages 26 visualization and simple metrics;
Chapter - 27: Advanced machine learning algorithms;
Chapter - 28: Advanced machine learning classification algorithms;
Chapter - 29: Technical communication and documentation;


Section - FIVE: Enterprise Big Data architecture;


Chapter - 30: Introduction to the Big Data architecture;
Chapter - 31: Strength and resilience – the Big Data platform;
Chapter - 32: Design principles for Big Data architecture;
Chapter - 33: Big Data infrastructure;
Chapter - 34: Big Data platforms;
Chapter - 35: The Big Data application provider;
Chapter - 36: System orchestration in Big Data

Erscheinungsdatum
Verlagsort London
Sprache englisch
Maße 170 x 240 mm
Themenwelt Schulbuch / Wörterbuch Lexikon / Chroniken
Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
ISBN-10 1-3986-0174-8 / 1398601748
ISBN-13 978-1-3986-0174-1 / 9781398601741
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90