The Encyclopedia of the Solar System, Third Edition-winner of the 2015 PROSE Award in Cosmology & Astronomy from the Association of American Publishers-provides a framework for understanding the origin and evolution of the solar system, historical discoveries, and details about planetary bodies and how they interact-with an astounding breadth of content and breathtaking visual impact. The encyclopedia includes the latest explorations and observations, hundreds of color digital images and illustrations, and over 1,000 pages. It stands alone as the definitive work in this field, and will serve as a modern messenger of scientific discovery and provide a look into the future of our solar system. New additions to the third edition reflect the latest progress and growth in the field, including past and present space missions to the terrestrial planets, the outer solar systems and space telescopes used to detect extrasolar planets. - Winner of the 2015 PROSE Award in Cosmology & Astronomy from the Association of American Publishers- Presents 700 full-color digital images and diagrams from current space missions and observatories, bringing to life the content and aiding in the understanding and retention of key concepts. - Includes a substantial appendix containing data on planetary missions, fundamental data of relevance for planets and satellites, and a glossary, providing immediately accessible mission data for ease of use in conducting further research or for use in presentations and instruction. - Contains an extensive bibliography, providing a guide for deeper studies into broader aspects of the field and serving as an excellent entry point for graduate students aiming to broaden their study of planetary science.
Front Cover 1
Encyclopedia of the Solar System 4
Copyright 5
Contents 6
Foreword* 10
Preface to the Third Edition 12
Preface to the Second Edition 14
Preface to the First Edition 16
About the Editors 18
Contributors 20
Part I - The Solar System 24
Chapter 1 - The Solar System and Its Place in the Galaxy 26
1 INTRODUCTION 26
2 THE DEFINITION OF A PLANET 27
3 THE ARCHITECTURE OF THE SOLAR SYSTEM 28
4 THE ORIGIN OF THE SOLAR SYSTEM 45
5 THE SOLAR SYSTEM'S PLACE IN THE GALAXY 47
6 THE FATE OF THE SOLAR SYSTEM 50
7 CONCLUDING REMARKS 51
BIBLIOGRAPHY 51
Chapter 2 - The Origin of the Solar System 52
1 INTRODUCTION 52
2 STAR FORMATION AND PROTOPLANETARY DISKS 53
3 METEORITES AND THE ORIGIN OF THE SOLAR SYSTEM 56
4 NUCLEOSYNTHESIS AND SHORT-LIVED ISOTOPES 61
5 EARLY STAGES OF PLANETARY GROWTH 64
6 FORMATION OF TERRESTRIAL PLANETS 66
7 THE ASTEROID BELT 71
8 GROWTH OF GAS AND ICE GIANT PLANETS 72
9 PLANETARY SATELLITES 74
10 EXTRASOLAR PLANETS 75
11 SUMMARY AND FUTURE PROSPECTS 76
BIBLIOGRAPHY 77
Chapter 3 - Solar System Dynamics: Regular and Chaotic Motion 78
1 INTRODUCTION: KEPLERIAN MOTION 78
2 THE TWO-BODY PROBLEM 80
3 PLANETARY PERTURBATIONS AND THE ORBITS OF SMALL BODIES 81
4 CHAOTIC MOTION 86
5 ORBITAL EVOLUTION OF MINOR BODIES 91
6 LONG-TERM STABILITY OF PLANETARY ORBITS 94
7 DISSIPATIVE FORCES AND THE ORBITS OF SMALL BODIES 95
8 CHAOTIC ROTATION 99
9 EPILOG 101
BIBLIOGRAPHY 101
Part II - Fundamental Planetary Processes and Properties 104
Chapter 4 - Planetary Impacts 106
1 IMPACT CRATERS 106
2 IMPACT PROCESSES 112
3 IMPACTS AND PLANETARY EVOLUTION 117
4 IMPACTS AS PLANETARY PROBES 120
BIBLIOGRAPHY 122
Chapter 5 - Planetary Volcanism 124
1 SUMMARY OF PLANETARY VOLCANIC FEATURES 124
2 CLASSIFICATION OF ERUPTIVE PROCESSES 131
3 EFFUSIVE ERUPTIONS AND LAVA FLOWS 132
4 EXPLOSIVE ERUPTIONS 134
5 INFERENCES ABOUT PLANETARY INTERIORS 140
BIBLIOGRAPHY 142
Chapter 6 - Magnetic Field Generation in Planets 144
1 PLANETARY MAGNETIC FIELD OBSERVATIONS 144
2 THE DYNAMO MECHANISM 148
3 THE STANDARD PLANETARY DYNAMO 150
4 SIMULATIONS AND EXPERIMENTS 152
5 PLANETARY DYNAMOS 154
6 CONCLUSIONS AND FUTURE PROSPECTS 158
BIBLIOGRAPHY 158
Chapter 7 - Planetary Magnetospheres 160
1 WHAT IS A MAGNETOSPHERE? 160
2 TYPES OF MAGNETOSPHERES 161
3 PLANETARY MAGNETIC FIELDS 167
4 MAGNETOSPHERIC PLASMAS 169
5 DYNAMICS 173
6 INTERACTIONS WITH MOONS 177
7 CONCLUSIONS 179
BIBLIOGRAPHY 180
Chapter 8 - Rotation of Planets 182
INTRODUCTION 182
1 OBSERVED ROTATION STATE OF PLANETS 182
2 ORIGIN AND LONG-TERM SPIN EVOLUTION 183
3 LONG-TERM EVOLUTION OF THE ORIENTATION 187
4 ROTATIONAL FLATTENING OF PLANETS 188
5 PRECESSION 189
6 NUTATION 192
7 LOD VARIATIONS 194
8 LIBRATION 198
9 WOBBLES AND THE INTERIORS OF TERRESTRIAL PLANETS 200
10 OBSERVATION OF THE ROTATION OF TERRESTRIAL PLANETS 204
BIBLIOGRAPHY 207
Chapter 9 - Evolution of Planetary Interiors 208
1 INTRODUCTION 208
2 FORMATION AND EARLY EVOLUTION OF TERRESTRIAL BODIES 209
3 SUBSOLIDUS CONVECTION 212
4 ROCK RHEOLOGY AND MODES OF CONVECTION 216
5 MODELING INTERIOR DYNAMICS AND EVOLUTION 220
6 CONSTRAINTS ON AND MODELS OF THE EVOLUTION OF PLANETARY INTERIORS 221
7 CONCLUDING REMARKS AND PERSPECTIVES 230
BIBLIOGRAPHY 231
Chapter 10 - Astrobiology 232
1 INTRODUCTION 232
2 WHAT IS LIFE? 233
3 THE HISTORY OF LIFE ON EARTH 237
4 THE ORIGIN OF LIFE 240
5 LIMITS TO LIFE 242
6 LIFE IN THE SOLAR SYSTEM 242
7 HOW TO SEARCH FOR LIFE ON MARS, EUROPA, OR ENCELADUS 251
8 LIFE ABOUT OTHER STARS 252
9 CONCLUSION 253
BIBLIOGRAPHY 253
Part III - The Sun 256
Chapter 11 - The Sun 258
1 INTRODUCTION 258
2 THE SOLAR INTERIOR 259
3 THE PHOTOSPHERE 262
4 THE CHROMOSPHERE AND TRANSITION REGION 264
5 THE CORONA 266
6 SOLAR FLARES AND CMES 271
7 FINAL COMMENTS 281
BIBLIOGRAPHY 282
Chapter 12 - The Solar Wind 284
1 DISCOVERY 284
2 STATISTICAL PROPERTIES IN THE ECLIPTIC PLANE AT 1AU 285
3 NATURE OF THE HELIOSPHERIC MAGNETIC FIELD 286
4 CORONAL AND SOLAR WIND STREAM STRUCTURE 287
5 THE HELIOSPHERIC CURRENT SHEET AND SOLAR LATITUDE EFFECTS 288
6 EVOLUTION OF STREAM STRUCTURE WITH HELIOCENTRIC DISTANCE 289
7 CORONAL MASS EJECTIONS AND TRANSIENT SOLAR WIND DISTURBANCES 291
8 VARIATION WITH DISTANCE FROM THE SUN 294
9 TERMINATION OF THE SOLAR WIND 295
10 KINETIC PROPERTIES OF THE PLASMA 296
11 HEAVY ION CONTENT 299
12 ENERGETIC PARTICLES 299
13 TURBULENCE AND MAGNETIC FIELD AND VELOCITY FLUCTUATIONS 300
14 CONCLUSION 301
BIBLIOGRAPHY 302
Part IV - Earthlike Planets 304
Chapter 13 - Mercury 306
1 EXPLORATION OF MERCURY 306
2 GENERAL PLANETARY CHARACTERISTICS 307
3 MOTION AND TEMPERATURE 307
4 INTERNAL STRUCTURE AND MAGNETIC FIELD 309
5 EXOSPHERE AND MAGNETOSPHERE 311
6 GEOLOGIC FEATURES 315
7 RECENT SURFACE FEATURES 324
8 HISTORY 326
BIBLIOGRAPHY 327
Chapter 14 - Venus: Atmosphere 328
1 INTRODUCTION AND OBSERVATIONS 329
2 ATMOSPHERIC TEMPERATURES 331
3 COMPOSITION 334
4 CLOUDS AND HAZES 337
5 GENERAL CIRCULATION AND DYNAMICS 339
6 EVOLUTION OF THE ATMOSPHERE AND CLIMATE 342
BIBLIOGRAPHY 345
Chapter 15 - Venus: Surface and Interior 346
1 INTRODUCTION 346
2 HISTORY OF VENUS EXPLORATION 347
3 GENERAL CHARACTERISTICS 348
4 IMPACT CRATERS AND RESURFACING HISTORY 349
5 INTERIOR PROCESSES 352
6 COMPOSITION 355
7 VOLCANISM 358
8 TECTONICS 360
9 SUMMARY 364
BIBLIOGRAPHY 364
Books 364
Journal Articles Special Issues 364
Web Sites 364
Chapter 16 - Mars Atmosphere: History and Surface Interactions 366
1 INTRODUCTION 366
2 VOLATILE INVENTORIES AND THEIR HISTORY 367
3 PRESENT AND PAST CLIMATES 371
4 CONCLUDING REMARKS 379
BIBLIOGRAPHY 380
Chapter 17 - Mars: Surface and Interior 382
1 MARS EXPLORATION 382
2 GENERAL CHARACTERISTICS 384
3 IMPACT CRATERING 387
4 VOLCANISM 388
5 TECTONICS 390
6 CANYONS 390
7 WATER 391
8 ICE 395
9 WIND 395
10 POLES 396
11 THE VIEW FROM THE SURFACE 396
12 SUMMARY 400
BIBLIOGRAPHY 400
Chapter 18 - Interior Structure and Evolution of Mars 402
1 INTRODUCTION 402
2 FORMATION AND DIFFERENTIATION OF MARS 404
3 CORE 405
4 MANTLE 406
5 CRUST 407
6 PRINCIPLES OF GLOBAL INTERIOR STRUCTURE AND EVOLUTION 408
7 GLOBAL INTERIOR STRUCTURE OF MARS 413
8 EVOLUTION OF MARS 416
BIBLIOGRAPHY 419
Chapter 19 - Mars: Landing Site Geology, Mineralogy, and Geochemistry 420
1 INTRODUCTION TO MARS EXPLORATIION 420
2 LANDING SITES ON MARS 423
3 MARS LANDING SITES IN REMOTELY SENSED DATA 427
4 LANDING SITE GEOLOGY 432
5 LANDING SITE MINERALOGY AND GEOCHEMISTRY 435
6 IMPLICATIONS FOR THE EVOLUTION OF MARS 440
BIBLIOGRAPHY 442
Part V - Earth and Moon as Planets 444
Chapter 20 - Earth as a Planet: Atmosphere and Oceans 446
1 OVERVIEW OF PLANETARY CHARACTERISTICS 447
2 VERTICAL STRUCTURE OF THE ATMOSPHERE 448
3 ATMOSPHERIC CIRCULATION 451
4 OCEANS 456
5 CLIMATE 459
6 LIFE IN THE ATMOSPHERE-OCEAN SYSTEM 464
7 CONCLUSIONS 467
BIBLIOGRAPHY 467
Chapter 21 - Earth as a Planet: Surface and Interior 468
1 INTRODUCTION: THE EARTH AS A GUIDE TO OTHER PLANETS 468
2 PHYSIOGRAPHIC PROVINCES OF EARTH 470
3 EARTH SURFACE PROCESSES 479
4 TOOLS FOR STUDYING EARTH'S DEEP INTERIOR 485
5 SEISMIC SOURCES 489
6 EARTH'S RADIAL STRUCTURE 492
7 EARTH IN THREE DIMENSIONS 496
8 EARTH AS A ROSETTA STONE 500
BIBLIOGRAPHY 501
Chapter 22 - Space Weather 502
1 THE SOLAR AND HELIOSPHERIC ROLES IN SPACE WEATHER 504
2 THE GEOSPACE ROLE IN SPACE WEATHER 507
3 ATMOSPHERIC EFFECTS OF SPACE WEATHER 510
4 PRACTICAL ASPECTS OF SPACE WEATHER 512
5 IMPLICATIONS FOR PLANETARY ASTRONOMY AND ASTROPHYSICS 514
6 EPILOGUE 514
BIBLIOGRAPHY 515
Chapter 23 - The Moon 516
1 INTRODUCTION 516
2 THE ORBIT OF THE MOON 518
3 PHYSICAL PROPERTIES 519
4 ORIGIN OF THE MOON 519
5 THE MAGMA OCEAN 520
6 THE INTERIOR OF THE MOON 522
7 THE LUNAR CRUST AND LUNAR TERRANES 526
8 LUNAR ROCKS 528
9 SURFACE OF THE MOON 531
10 LUNAR STRATIGRAPHY AND SURFACE AGES 536
11 THE REGOLITH 540
12 THE APOLLO AND LUNA LANDING SITES 541
13 SIGNIFICANCE OF LANDING SITES FOR THE INTERPRETATION OF GLOBAL DATA SETS 556
14 LUNAR VOLATILES 559
15 LUNAR ATMOSPHERE AND ENVIRONMENT 560
ACKNOWLEDGEMENT 561
BIBLIOGRAPHY 561
Chapter 24 - Interior of the Moon 562
1 INTRODUCTION 562
2 BULK LUNAR PROPERTIES 562
3 METHODS USED TO PROBE THE LUNAR INTERIOR 564
4 LUNAR INTERNAL STRUCTURE 572
5 IMPLICATIONS FOR LUNAR FORMATION AND EVOLUTION 575
BIBLIOGRAPHY 577
Chapter 25 - Lunar Exploration 578
1 INTRODUCTION 578
2 TELESCOPIC EXPLORATION OF THE MOON 579
3 THE EARLY SPACE AGE 580
4 THE APOLLO PROGRAM 582
5 POST-APOLLO EXPLORATION 589
6 LETTING THE MOON COME TO US: THE IMPORTANCE OF LUNAR METEORITES FOR LUNAR EXPLORATION 595
7 FUTURE LUNAR EXPLORATION OBJECTIVES 596
8 CONCLUSION 601
ACKNOWLEDGMENTS 601
BIBLIOGRAPHY 602
Websites 602
Part VI - Asteroids, Dust and Comets 604
Chapter 26 - Main-Belt Asteroids 606
1 INTRODUCTION TO ASTEROIDS 606
2 LOCATIONS AND ORBITS 610
3 PHYSICAL CHARACTERISTICS AND COMPOSITION 616
4 PUZZLES AND PROMISE 622
BIBLIOGRAPHY 624
Chapter 27 - Near-Earth Objects 626
1 INTRODUCTION 626
2 SIGNIFICANCE 629
3 ORIGINS 630
4 POPULATION 633
5 PHYSICAL PROPERTIES 635
6 IN SITU STUDIES 641
7 IMPACT HAZARDS 642
APPENDIX 645
BIBLIOGRAPHY 646
Chapter 28 - Meteorites 648
1 INTRODUCTION 648
2 METEORITE CLASSIFICATION 651
3 METEORITES OF ASTEROIDAL ORIGIN 664
4 METEORITES FROM LARGER BODIES 666
5 CHEMICAL AND ISOTOPIC SIGNATURES 667
6 COMPONENTS OF CHONDRITES 670
7 METEORITE CHRONOMETRY 672
8 EPILOGUE 678
BIBLIOGRAPHY 678
Chapter 29 - Dust in the Solar System 680
1 INTRODUCTION 680
2 MANIFESTATIONS OF COSMIC DUST 682
3 DYNAMICS AND EVOLUTION 698
4 FUTURE STUDIES 701
BIBLIOGRAPHY 705
Chapter 30 - Physics and Chemistry of Comets 706
1 SPACE MISSIONS TO COMETS 706
2 A BRIEF HISTORY OF COMET STUDIES 708
3 PHYSICS OF THE NUCLEUS 712
4 COMA AND HYDROGEN CLOUD 716
5 TAILS 718
6 COMET CHEMISTRY 721
7 FORMATION AND ULTIMATE FATE OF COMETS 723
8 SUMMARY 725
BIBLIOGRAPHY 726
Chapter 31 - Comet Populations and Cometary Dynamics 728
1 BASIC ORBITAL DYNAMICS OF COMETS 729
2 TAXONOMY OF COMETARY ORBITS 732
3 COMET RESERVOIRS 736
4 CONCLUSIONS 742
BIBLIOGRAPHY 742
Part VII - Giant Planets and their Satellites 744
Chapter 32 - Atmospheres of the Giant Planets 746
1 INTRODUCTION 746
2 CHEMICAL COMPOSITION 747
3 CLOUDS AND AEROSOLS 751
4 DYNAMICAL METEOROLOGY OF THE TROPOSPHERE AND STRATOSPHERE 756
5 ENERGETIC PROCESSES IN THE HIGH ATMOSPHERE 761
6 A WORD ABOUT EXTRASOLAR PLANETS 764
ACKNOWLEDGMENT 765
BIBLIOGRAPHY 765
Chapter 33 - Interiors of the Giant Planets 766
1 GENERAL OVERVIEW 766
2 CONSTRAINTS ON PLANETARY INTERIORS 768
3 EQUATIONS OF STATE 770
4 PLANETARY INTERIOR MODELING 773
5 PLANETARY INTERIOR MODELS 774
6 JOVIAN PLANET EVOLUTION 779
7 FUTURE DIRECTIONS 780
BIBLIOGRAPHY 781
Chapter 34 - Planetary Satellites 782
1 SUMMARY OF CHARACTERISTICS 782
2 FORMATION OF SATELLITES 788
3 OBSERVATIONS OF SATELLITES 790
4 INDIVIDUAL SATELLITES 792
ACKNOWLEDGMENT 800
BIBLIOGRAPHY 800
Chapter 35 - Io: The Volcanic Moon 802
1 INTRODUCTION 802
2 IO EXPLORATION 803
3 IO'S SURFACE 806
4 IO'S VOLCANIC ERUPTIONS 810
5 HEAT FLOW AND INTERIOR 811
6 ATMOSPHERE, TORUS, AND THE JUPITER ENVIRONMENT 813
7 OUTSTANDING QUESTIONS AND FUTURE EXPLORATION 814
BIBLIOGRAPHY 815
Chapter 36 - Europa 816
1 INTRODUCTION AND EXPLORATION HISTORY 816
2 FORMATIONAL AND COMPOSITIONAL MODELS 817
3 INTERNAL STRUCTURE, TIDES, AND GLOBAL TECTONICS 818
4 LANDFORMS ON EUROPA 820
5 SURFACE COMPOSITION AND THERMAL STATE 829
6 SURFACE PHYSICAL PROCESSES 830
7 SURFACE AGE AND EVOLUTION 831
8 ASTROBIOLOGICAL POTENTIAL 833
9 FUTURE EXPLORATION 833
BIBLIOGRAPHY 834
Chapter 37 - Ganymede and Callisto 836
1 INTRODUCTION 836
2 EXPLORATION 836
3 INTERIORS 839
4 SURFACE MATERIALS 843
5 IMPACT CRATERS 846
6 TECTONISM AND VOLCANISM 848
7 UNANSWERED QUESTIONS AND FUTURE EXPLORATION 851
BIBLIOGRAPHY 852
Chapter 38 - Titan 854
1 INTRODUCTION 854
2 THE ATMOSPHERE OF TITAN 857
3 THE SURFACE OF TITAN 864
4 THE INTERIOR AND EXCHANGE PROCESSES 870
5 LOOKING AHEAD 871
ACKNOWLEDGMENTS 872
BIBLIOGRAPHY 872
Chapter 39 - Enceladus 874
1 INTRODUCTION AND HISTORY 874
2 SHAPE, GRAVITY, TOPOGRAPHY 875
3 SURFACE COMPOSITION 875
4 SURFACE GEOLOGY AND TECTONICS 875
5 THE SOUTH POLAR REGION 877
6 PRESENT-DAY STRUCTURE 879
7 EVOLUTION 881
8 CONCLUSIONS 882
9 THE FUTURE 882
Chapter 40 - Triton 884
1 INTRODUCTION 884
2 DISCOVERY AND ORBIT 885
3 PRE-VOYAGER ASTRONOMY 886
4 VOYAGER 2 ENCOUNTER 888
5 GENERAL CHARACTERISTICS 889
6 GEOLOGY 891
7 ATMOSPHERE AND SURFACE 895
8 ORIGIN AND EVOLUTION 901
BIBLIOGRAPHY 904
Chapter 41 - Planetary Rings 906
1 INTRODUCTION 906
2 HOW WE LEARN ABOUT RINGS 907
3 RINGS BY LOCATION 908
4 DENSE BROAD DISKS 913
5 DENSE NARROW RINGS 919
6 DUSTY RINGS 920
7 USING RINGS TO PROBE THE SOLAR SYSTEM 924
8 AGE AND ORIGINS OF RING SYSTEMS 927
BIBLIOGRAPHY 928
Part VIII - Beyond the Planets 930
Chapter 42 - Pluto 932
1 HISTORICAL BACKGROUND 932
2 PLUTO'S ORBIT AND SPIN 934
3 THE MUTUAL EVENTS 936
4 PLUTO'S SURFACE PROPERTIES AND APPEARANCE 937
5 PLUTO'S INTERIOR AND BULK COMPOSITION 940
6 PLUTO'S ATMOSPHERE 941
7 CHARON 943
8 THE ORIGIN OF PLUTO'S SATELLITE SYSTEM 945
BIBLIOGRAPHY 947
Chapter 43 - Kuiper Belt: Dynamics 948
1 HISTORICAL PERSPECTIVE 948
2 ORBITAL AND DYNAMICAL STRUCTURE OF THE TRANS-NEPTUNIAN POPULATION 949
3 CORRELATIONS BETWEEN PHYSICAL AND ORBITAL PROPERTIES 953
4 SIZE DISTRIBUTION OF THE TRANS-NEPTUNIAN POPULATION AND TOTAL MASS 954
5 ECLIPTIC COMETS 956
6 THE PRIMORDIAL SCULPTING OF THE TRANS-NEPTUNIAN POPULATION 957
7 CONCLUDING REMARKS 961
BIBLIOGRAPHY 962
Chapter 44 - Kuiper Belt Objects: Physical Studies 964
1 DISCOVERING KUIPER BELT AND CENTAUR OBJECTS 965
2 NAMING OBJECTS 966
3 DATABASES OF KNOWN OBJECTS 966
4 DYNAMICAL CLASSES 966
5 BRIGHTNESS 967
6 DIAMETER 968
7 ALBEDO 969
8 BRIGHTNESS VARIATION 969
9 COMPOSITION 972
10 KBO BINARIES 975
11 MASS OF THE KUIPER BELT 977
12 NEW HORIZONS 977
13 FUTURE WORK 978
BIBLIOGRAPHY 978
Chapter 45 - Extrasolar Planets 980
1 INTRODUCTION 980
2 DETECTION TECHNIQUES 981
3 OBSERVATIONAL RESULTS OF EXTRASOLAR PLANETS 986
4 THE KEPLER MISSION 996
5 SUMMARY AND OUTLOOK 999
BIBLIOGRAPHY 1000
Part IX - Exploring the Solar System 1002
Chapter 46 - Strategies of Modern Solar System Exploration 1004
1 EXPANDING HUMAN FRONTIERS INTO SPACE 1004
2 A CASE STUDY: HUMAN EXPLORATION OF MARS 1012
3 SPACE EXPLORATION AND SOCIETY 1016
4 CONCLUSIONS AND OUTLOOK 1019
BIBLIOGRAPHY 1019
Chapter 47 - A History of Solar System Studies 1022
1 BABYLONIANS AND GREEKS 1022
2 COPERNICUS AND TYCHO 1024
3 KEPLER AND GALILEO 1024
4 SECOND HALF OF THE SEVENTEENTH CENTURY 1026
5 THE EIGHTEENTH CENTURY 1029
6 THE NINETEENTH CENTURY 1030
7 THE TWENTIETH CENTURY PRIOR TO THE SPACE AGE 1035
BIBLIOGRAPHY 1040
Chapter 48 - X-rays in the Solar System 1042
1 INTRODUCTION 1042
2 EARTH 1043
3 THE MOON 1046
4 MERCURY 1048
5 VENUS 1048
6 MARS 1050
7 JUPITER 1052
8 GALILEAN SATELLITES 1054
9 IO PLASMA TORUS 1055
10 SATURN 1055
11 RINGS OF SATURN 1056
12 COMETS 1057
13 ASTEROIDS 1062
14 HELIOSPHERE 1063
15 SUMMARY 1064
ACKNOWLEDGMENTS 1068
BIBLIOGRAPHY 1068
Chapter 49 - The Solar System at Ultraviolet Wavelengths 1070
1 A BRIEF HISTORY OF UV ASTRONOMY 1070
2 NATURE OF SOLAR SYSTEM ASTRONOMICAL OBSERVATIONS 1072
3 OBSERVATIONS OF PLANETARY ATMOSPHERES 1072
4 OBSERVATIONS OF SOLID SURFACES 1083
5 CONCLUSIONS 1093
BIBLIOGRAPHY 1093
Chapter 50 - Infrared Views of the Solar System from Space 1096
1 INTRODUCTION 1096
2 THE ZODIACAL DUST CLOUD AND ITS SOURCES 1097
3 A RING OF DUST AROUND THE EARTH'S ORBIT 1101
4 COMETS AND THEIR NATURE 1102
5 ASTEROID PHYSICAL PROPERTIES 1106
6 PLUTO AND BEYOND 1108
7 AN EXCITING FUTURE 1110
INFORMATION WEB SITES 1110
Chapter 51 - New Generation Ground-Based Optical/Infrared Telescopes 1112
1 INTRODUCTION 1112
2 ADVANCES IN THE CONSTRUCTION OF LARGE TELESCOPES AND IN IMAGE QUALITY 1113
3 ADVANCES WITH DETECTOR ARRAYS 1121
4 ADVANCES IN ADAPTIVE OPTICS (AO) 1122
5 SKY SURVEY TELESCOPES 1123
6 CONCLUDING REMARKS 1127
BIBLIOGRAPHY 1128
Chapter 52 - The Solar System at Radio Wavelengths 1130
1 INTRODUCTION 1130
2 THERMAL EMISSION FROM PLANETARY BODIES 1132
3 NONTHERMAL RADIATION 1143
4 FUTURE OF RADIO ASTRONOMY FOR SOLAR SYSTEM RESEARCH 1154
BIBLIOGRAPHY 1154
Chapter 53 - Planetary Radar 1156
1 INTRODUCTION 1156
2 TECHNIQUES 1159
3 TARGET PROPERTIES 1164
4 RADAR MEASUREMENTS OF PLANETARY BODIES 1167
5 THE FUTURE OF PLANETARY RADAR 1180
ACKNOWLEDGMENTS 1181
BIBLIOGRAPHY 1181
Chapter 54 - Remote Sensing of Chemical Elements Using Nuclear Spectroscopy 1184
1 INTRODUCTION 1184
2 ORIGIN OF GAMMA RAYS AND NEUTRONS 1185
3 DETECTION OF GAMMA RAYS AND NEUTRONS 1190
4 MISSIONS 1194
5 SCIENCE 1198
6 FUTURE PROSPECTS 1204
BIBLIOGRAPHY 1206
Chapter 55 - Probing the Interiors of Planets with Geophysical Tools 1208
1 INTRODUCTION 1208
2 INVESTIGATING PLANETARY INTERIORS USING SEISMOLOGY 1209
3 INVESTIGATING PLANETARY INTERIORS USING GRAVITY AND DYNAMICS 1213
4 INVESTIGATING PLANETARY INTERIORS USING HEAT FLOW MEASUREMENTS 1215
5 INVESTIGATING PLANETARY INTERIORS USING EM SOUNDING 1221
6 SUMMARY 1226
BIBLIOGRAPHY 1226
Chapter 56 - Planetary Exploration Missions 1228
1 INTRODUCTION 1229
2 PROGRAM EVOLUTION 1229
3 SUN AND HELIOSPHERE 1232
4 MERCURY 1234
5 VENUS 1234
6 EARTH 1235
7 MOON 1236
8 MARS 1240
9 SMALL BODIES 1242
10 OUTER PLANETS AND MOONS 1244
11 CONCLUSION 1245
Chapter 57 - Exploration and Analysis of Planetary Shape and Topography Using Stereophotogrammetry 1246
1 INTRODUCTION 1246
2 MISSIONS AND CAMERAS 1247
3 COORDINATE SYSTEMS 1248
4 PHOTOGRAMMETRIC PROCESSING 1248
5 QUALITY ASSESSMENT 1250
6 EXAMPLES 1251
7 SUMMARY AND CONCLUSIONS 1254
ACKNOWLEDGMENTS 1255
BIBLIOGRAPHY 1256
Appendix 1258
TABLE 1: SELECTED ASTRONOMICAL CONSTANTS 1258
TABLE 2: PHYSICAL AND ORBITAL PROPERTIES OF THE SUN, PLANETS AND DWARF PLANETS 1258
TABLE 3: PHYSICAL AND ORBITAL PROPERTIES OF THE SATELLITES OF PLANETS AND DWARF PLANETS 1259
TABLE 4: SOLAR SYSTEM EXPLORATION MISSIONS 1267
Bibliography 1282
Table 4 1282
Glossary 1284
Index 1306
Contributors
Mahesh Anand, Department of Physical Sciences, The Open University, UK
Markus J. Aschwanden, Lockheed Martin ATC Solar and Astrophysics Laboratory, Palo Alto, CA, USA
Fran Bagenal, Department of Astrophysical & Planetary Sciences, Laboratory for Atmospheric & Space Physics, University of Colorado, Boulder, Boulder, CO, USA
W. Bruce Banerdt, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
James F. Bell III, School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
Anil Bhardwaj, Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum, Kerala, India
Richard P. Binzel, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
John C. Brandt, Department of Astronomy, University of Washington, Seattle, Washington, USA
Doris Breuer, Institute for Planetary Research, German Aerospace Center (DLR), Berlin, Germany
Daniel T. Britt, University of Central Florida, Orlando, FL, USA
Bonnie J. Buratti, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
James D. Burke, The Planetary Society, Pasadena, CA, USA
Michael H. Carr, U. S. Geological Survey, Menlo Park, CA, USA
Lynn M. Carter
Planetary Geodynamics Laboratory
NASA Goddard Space Flight Center, Greenbelt, MD, USA
David C. Catling, University of Washington, Dept. of Earth and Space Sciences/Astrobiology Program, Seattle, WA, USA
John E. Chambers, Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC, USA
Geoffrey Collins, Physics and Astronomy Dept., Wheaton College, Norton, Massachuse, USA
Athena Coustenis, LESIA - Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot – Meudon, France
Ian A. Crawford, Department of Earth and Planetary Sciences, Birkbeck College, University of London, London, UK
Wanda L. Davis, Space Science Division, NASA Ames Research Center, Moffett Field, CA, USA
Véronique Dehant, Royal Observatory of Belgium, Brussels, Belgium
Konrad Dennerl, Max-Planck-Institut für extraterrestrische Physik, Garching, Germany
Imke de Pater
Astronomy Department, University of California, Berkeley, CA, USA
Faculty of Aerospace Engineering, Delft University of Technology, Delft, NL
SRON Netherlands Institute for Space Research, Utrecht, The Netherlands
Deborah L. Domingue, Planetary Science Institute, Tucson, AZ, USA
Luke Dones, Southwest Research Institute, Boulder, CO, USA
Timothy E. Dowling, Department of Physics and Astronomy, University of Louisville, Louisville, KY, USA
Line Drube, German Aerospace Center (DLR), Institute of Planetary Research, 12489 Berlin, Germany
Adam M. Dziewonski, Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
Michael Endl, McDonald Observatory, University of Texas at Austin, Austin, TX, USA
Carolyn M. Ernst, Space Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
Berndt Feuerbacher, German Aerospace Center, Cologne, Germany (ret.)
Jonathan J. Fortney, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA, USA
Matthew P. Golombek, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
J.T. Gosling, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
Richard A.F. Grieve, Centre for Planetary Science and Exploration, University of Western Ontario, London, ON, Canada
Robert Grimm, Southwest Research Institute, Boulder, CO, USA
Matthias Grott, German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
Eberhard Grün, Max-Planck-Institut für Kernphysik, Heidelberg, Germany and LASP, University of Colorado, Boulder, CO, USA
S.J. Guy Consolmagno, Specola Vaticana, Vatican City State
Klaus Gwinner, Planetary Geodesy Department, German Aerospace Center, Institute of Planetary Research, Berlin, Germany
Alex N. Halliday, Department of Earth Sciences, University of Oxford, Oxford, UK
Alan W. Harris, German Aerospace Center (DLR), Institute of Planetary Research, 12489 Berlin, Germany
Matthew M. Hedman, Center for Radiophysics and Space Research, Cornell University, Ithaca, New York, USA
Amanda R. Hendrix, Planetary Science Institute, Tucson, AZ, USA
Harald Hiesinger, Institut für Planetologie, Westfälische Wilhelms-Universität, Münster, Germany
Bernhard Hufenbach, European Space Agency, Noordwijk, The Netherlands
Donald M. Hunten, University of Arizona, AZ, USA
Ralf Jaumann
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
Freie Universität Berlin, Institut für Geologische Wissenschaften, Berlin, Germany
Torrence V. Johnson, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Katherine H. Joy, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK
Randolph L. Kirk, U.S. Geological Survey, Flagstaff, AZ, USA
Margaret Galland Kivelson, Department of Earth & Space Sciences, University of California, Los Angeles, CA, USA and Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USA
Harald Krüger, Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
William S. Kurth, Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
Larry Lebofsky, Planetary Science Institute, Tucson, AZ, USA
David Leverington, Stoke Lacy, Herefordshire, United Kingdom
Harold F. Levison, Southwest Research Institute, Boulder, CO, USA
Michael E. Lipschutz, Purdue University, West Lafayette, IN, USA (Professor Emeritus)
Jack J. Lissauer, Space Science & Astrobiology Division, NASA Ames Research Center Moffett Field, CA, USA
Carey M. Lisse, Applied Physics Laboratory, Johns Hopkins University, Laurel,...
Erscheint lt. Verlag | 30.5.2014 |
---|---|
Sprache | englisch |
Themenwelt | Schulbuch / Wörterbuch ► Lexikon / Chroniken |
Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik | |
Technik | |
ISBN-10 | 0-12-416034-4 / 0124160344 |
ISBN-13 | 978-0-12-416034-7 / 9780124160347 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
![PDF](/img/icon_pdf_big.jpg)
Größe: 272,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
![EPUB](/img/icon_epub_big.jpg)
Größe: 158,0 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich