Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Handbook on the Physics and Chemistry of Rare Earths -

Handbook on the Physics and Chemistry of Rare Earths (eBook)

eBook Download: EPUB
2005 | 1. Auflage
418 Seiten
Elsevier Science (Verlag)
978-0-08-046102-1 (ISBN)
Systemvoraussetzungen
308,47 inkl. MwSt
(CHF 299,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The rare earths play a unique role in science. These seventeen related elements afford a panoply of subtle variations deriving from the systematic development of their electronic configurations, allowing a test of theory with excellent resolution. In contrast they find widespread use in even the most mundane processes such as steel making, for polishing materials and gasoline cracking catalysts. In between are exotic uses such as TV screen phosphors, lasers, high strength permanent magnets and chemical probes.

This multi-volume handbook covers the entire rare earth field in an integrated manner. Each chapter is a comprehensive up-to-date, critical review of a particular segment of the field. The work offers the researcher and graduate student alike, a complete and thorough coverage of this fascinating field.

? Authoritative
? Comprehensive
? Up-to-date
? Critical
? Reliable
The rare earths play a unique role in science. These seventeen related elements afford a panoply of subtle variations deriving from the systematic development of their electronic configurations, allowing a test of theory with excellent resolution. In contrast they find widespread use in even the most mundane processes such as steel making, for polishing materials and gasoline cracking catalysts. In between are exotic uses such as TV screen phosphors, lasers, high strength permanent magnets and chemical probes.This multi-volume handbook covers the entire rare earth field in an integrated manner. Each chapter is a comprehensive up-to-date, critical review of a particular segment of the field. The work offers the researcher and graduate student alike, a complete and thorough coverage of this fascinating field.* Authoritative* Comprehensive* Up-to-date* Critical* Reliable

Cover 1
Preface 6
Chapter 223. Rare-earth Materials for Solid Oxide Fuels (SOFC) by Natsuko Sakai, Katsuhiko Yamaji, Teruhisa Horita, Yue Ping Xiong and Harumi Yokokawa National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan 6
Chapter 224. Oxo-selenates of Rare Earth Elements by Mathias S. Wickleder and Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany 7
Chapter 225. Rare-earth Beta-diketonates by Koen Binnemans Catholic University of Leuven, Leuven, Belgium 8
Chapter 226. Molecular Recognition and Sensing via Rare Earth Complexes by Satoshi Shinoda, Hiroyuki Miyake and Hiroshi Tsukube Osaka City University, Osaka, Japan 9
Contents 12
Contents of Volumes 1–34 14
Index of Contents of Volumes 1–35 24
Rare-earth materials for Solid Oxide Fuel Cells (SOFC) 30
List of symbols 30
List of acronyms 31
Introduction 32
Overview of the SOFC materials 38
Electrolytes 38
Anodes 43
Cathodes 44
Interconnects 45
Key issues in SOFC materials design 46
Materials and preparation cost 47
Processing simplicity 47
Ionic conductivity and transport number of electrolytes 50
Electron/hole conductivity of the anode, cathode and interconnect 52
Mechanical strength of the electrolyte and interconnect 58
Thermal expansion matching with other SOFC components 59
Chemical stability, compatibility with other cell component 65
Summary 69
References 69
Oxo-Selenates of rare earth elements 74
Introduction 74
Nomenclature and scope 74
Some generalities on SeO2-4 and SeO2-3 76
Oxo-selenates(VI) 77
Binary oxo-selenates(VI) 77
Anhydrous oxo-selenates(VI) 77
Oxo-selenate(VI)-hydrates 78
Acidic oxo-selenates(VI) 84
Ternary oxo-selenates(VI) 86
Anhydrous ternary oxo-selenates(VI) 86
Hydrates of ternary oxo-selenates(VI) 88
Properties of oxo-selenates(VI) 90
Thermal behaviour of oxo-selenates(VI) 90
Vibrational spectra of oxo-selenates(VI) 92
Miscellaneous 94
Oxo-selenates(IV) 94
Binary oxo-selenates(IV) 94
Syntheses 94
The oxo-selenates(IV) R2(SeO3)3 96
SeO2-rich and SeO2-poor oxo-selenates(IV) 101
Oxo-selenate(IV)-hydrates and acidic oxo-selenates(IV) 102
Anionic derivatives of oxo-selenates(IV) 106
General remarks and syntheses 106
Halide-oxo-selenates(IV) 110
Oxide-halide oxo-selenates(IV) 113
Derivatives with complex anions 117
Cationic derivatives of selenates(IV) 117
Alkali metal containing oxo-selenates(IV) 117
Transition metal containing oxo-selenates(IV) 120
Properties of oxo-selenates(IV) 123
Thermal behaviour of oxo-selenates(IV) 123
Vibrational spectra of oxo-selenates(IV) 125
Thermochemical investigations of oxo-selenates(IV) 126
Mixed-valent oxo-selenates(VI/IV) 128
Acknowledgements 131
References 131
Rare-earth beta-diketonates 136
Introduction 140
Overview of beta-diketone ligands and types of complexes 142
Synthetic strategies 150
Structural properties 157
Physical and chemical properties 173
Aggregation state and melting point 173
Color 173
Hydration states 182
Kinetic stability 185
Solubility 186
Solution structure 186
Electrochemical properties 187
Thermodynamic properties 188
Magnetic properties 188
Crystal-field splittings 189
Infrared spectra 190
Chirality sensing 190
Properties of hemicyanine dyes with beta-diketonate counter ions 191
Luminescence of beta-diketonate complexes 191
Photoluminescence 191
Electroluminescence 207
Triboluminescence 208
Sensitized chemiluminescence 212
From complexes to materials 214
Sol-gel glasses 214
Ormosils 215
beta-Diketonates in polymer matrices 219
beta-Diketonates in zeolites 224
Langmuir-Blodgett films (LB films) 226
Liquid crystals 229
Nonlinear optical materials 232
From materials to devices 234
Chelates for lasers 234
Organic light-emitting diodes (OLEDs) 235
Liquid crystal displays (LCDs) 245
Polymeric optical waveguides and amplifiers 246
NMR shift reagents 247
Historical development and general principles 247
Achiral shift reagents 250
Chiral shift reagents 255
Analytical applications 256
Trace analysis of lanthanide ions 256
Trace analysis of organic and biomolecular compounds 258
Luminescent visualization of latent fingerprints 259
Chemical sensors 261
Stationary phases in gas chromatography 261
Applications of volatile complexes 262
Volatile beta-diketonate complexes 262
Gas chromatographic separation of the rare earths 266
Preparation of thin films by metal-organic chemical vapor deposition (MOCVD) 267
Preparation of thin films by atomic layer deposition (ALD) 270
Fuel additives 271
Solvent extraction 272
Catalytic properties 276
Conclusions 279
Acknowledgements 280
References 280
Molecular recognition and sensing via rare earth complexes 302
List of symbols and acronyms 303
Introduction 303
Coordination chemistry and molecular recognition 307
Coordination and recognition of neutral substrates 307
Coordination and recognition of charged substrates 309
Coordination and recognition of chiral substrates 312
Optical sensing via rare earth probes 313
Rare earth complexes for luminescence sensing 313
Introduction 313
Luminescence sensing of neutral and anionic substrates 317
Luminescence sensing of cationic substrates 325
Luminescence sensing of biological substrates 327
Rare earth complexes for CD sensing 330
Introduction 330
Chirality sensing with ligand-based CD 330
Chirality sensing with metal-based CD 334
Chirality sensing with metal-based CPL 335
Magnetic sensing via rare earth probes 337
Rare earth complexes for NMR sensing 337
Introduction 337
Chirality sensing in aqueous solutions 341
Chirality sensing with hybrid probes 343
Chirality sensing with dynamic probes 344
Chirality sensing with high resolution NMR spectrometers 344
Rare earth complexes for MRI sensing 346
Introduction 346
pH-sensing 348
O2-sensing 352
Sensing of metal cations 353
Temperature sensing 354
MRI sensing with supramolecular probes 355
Sensing of natural supramolecules 357
Conclusion 359
Acknowledgements 359
References 360
Author Index 366
Subject Index 406

Chapter 223

Rare-earth materials for Solid Oxide Fuel Cells (SOFC)


Natsuko Sakai n-sakai@aist.go.jp; Katsuhiko Yamaji; Teruhisa Horita; Yue Ping Xiong; Harumi Yokokawa    National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan

Nomenclature

List of symbols

,b,x,y fractional atomic coordinates

α thermal diffusivity

0 oxygen concentration at the surface

p molar heat capacity

p,n molar heat capacity estimated by Neumann–Kopp's theory

O oxygen self diffusivity

O∗ oxygen isotope diffusivity

V oxygen vacancy diffusivity

δ molar oxygen deficiency

E ideal electric potential

Eelectrolyte electric potential in electrolyte

electrolyte efficiency of the electrolyte

F Faraday's constant

ΔG Gibb's free energy change in the redox reaction

ΔH enthalpy change in the redox reaction

η ideal efficiency

O2 oxygen flux through the interconnect

O2,electrolyte oxygen flux through the electrolytes

O2−surf oxide ion flux determined by surface exchange rate

ext electrical flux in the external circuit

s surface exchange rate constant

ox equilibrium constant of oxygen defect formation

L thickness of the electrolyte or interconnect plate

λ thermal conductivity

0 thermal conductivity of dense material

O2 chemical potential of oxygen molecule

n number of electron in the redox reaction

m molar volume

p partial pressure

O2 partial pressure of oxygen

π relative porosity

r correlation factor

R gas constant

ρ density

ΔS entropy change in the redox reaction

σ electrical conductivity

O2− oxide ion conductivity

e electron conductivity

h hole conductivity

T temperature

O oxygen vacancy in the lattice

z sample thickness

List of acronyms

APU auxiliary power unit

FCEV fuel cell electric vehicle

GDC gadolinium doped ceria

JPY Japanese yen

MCFC molten carbonate fuel cell

METI ministry of economy, trade and industry

MOLB mono block layer built

LSCF lanthanum strontium cobalt ferrite, (La,Sr)(Co,Fe)O3

LSGM lanthanum gallate (LaGaO3) with the substitution of strontium and magnesium (La,Sr)(Ga,Mg)Ox

LSGMC lanthanum gallate (LaGaO3) with the substitution of strontium, magnesium and cobalt (La,Sr)(Ga,Mg,Co)Ox

LSM lanthanum strontium manganite (La,Sr)MnO3

PAFC phosphoric acid fuel cell

PEFC polymer electrolyte fuel cell/proton exchange membrane fuel cell

PNNL Pacific Northwest National Laboratory

RDC rare earth doped ceria

ScSZ scandia stabilized zirconia

SOFC solid oxide fuel cell

YSZ yttria stabilized zirconia

1 Introduction


The world trend of research and development for fuel cell was largely changed from the beginning of 21st century. The research and development concerning fuel cell technology was drastically accelerated in Japan in the beginning of this century. The Japanese national strategy concerning fuel cell and hydrogen utilization was reported by the Agency of Natural Resources and Energy in 2002, and it encouraged the rapid introduction of the fuel cell electric vehicle (FCEV) using a polymer electrolyte fuel cell (PEFC) with pure hydrogen as fuel. This national report predicted that a strong collaboration is inevitable among developers, universities, public research institutes and governmental organizations to accelerate the introduction of fuel cells in the real world. Moreover, the fuel cell project team is organized by the Ministry of Economy, Trade and Industry (METI), the Ministry of the Environment, and the Ministry of Land, Infrastructure and Transport, which indicates that the development of fuel cells including the enactment of legal controls and the preparation of infrastructures is supported under the collaboration of these three ministries. Many campaigns for the enlightenment about fuel cell vehicles have been made by governments, and the automobile companies. The Japanese governmental budget concerning fuel cells and hydrogen technologies of METI in FY 2004 is 32.9 billion JPY (ca. $300 million US). In the United States, the president proposed $1.7 billion of research funding over five years for the FreedomCAR and the Hydrogen fuel initiative (Williams and Strakey, 2003).

Most of the fuel cells concerning these projects or initiatives are polymer electrolyte fuel cells (PEFCs), which consist of proton conductive organic membrane with platinum electrodes and operates at around 80 °C. PEFC has an excellent durability in fast start-up and shut-down conditions, and a higher energy conversion efficiency than conventional engines. However, only very high purity hydrogen can be used as the fuel of PEFC, because the platinum electrodes are rapidly disintegrated by the sulfur or carbon monoxide in the fuel or the ambient atmosphere. Furthermore, platinum is the common electrode material which raises the fabrication cost of PEFC.

There are many types of fuel cells which are categorized by their electrolyte materials in table 1. The component materials, operation conditions, and usage are quite different among each type of fuel cell. However, the principle of power generation is the same, that is, the Gibbs energy change due to the fuel oxidation is converted to electrical energy according to the following equation:

G=nFE,

  (1)

where the ideal efficiency

=ΔG/ΔH=(ΔH−TΔS)/ΔH.

  (2)

Table 1

Type of fuel cells categorized by electrolyte materials

Electrolyte Organic polymer Phosphoric acid solution Molten carbonate (NaCl, KCl, LiCl, etc.) Oxide ion conducting ceramics (YSZ, LSGM, etc.)
Conductive ion in electrolytes Proton (H+) Proton (H+) Carbonate ion (CO32−) Oxide ion (O2−)
Operation temperature 70–90°C 200°C 600–650°C 800–1000°C
Possible fuels for power generation High purity H2; CO should be under 10 ppm H2; CO should be under several % H2; CO; internal reforming of CH4 is possible H2, CO; internal reforming of CH4 is easy
Actual efficiency (HHV) using methane (CH4) 30–40% 36–42% 45–60% 45–65%
Scale and use Several kW...

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Kryptographie und Geschichte

von Wolfgang Killmann; Winfried Stephan

eBook Download (2024)
Springer Berlin Heidelberg (Verlag)
CHF 38,95