Nicht aus der Schweiz? Besuchen Sie lehmanns.de

R for Data Science Cookbook (eBook)

(Autor)

eBook Download: EPUB
2016
452 Seiten
Packt Publishing (Verlag)
978-1-78439-204-8 (ISBN)

Lese- und Medienproben

R for Data Science Cookbook - Yu-Wei Chiu
Systemvoraussetzungen
38,39 inkl. MwSt
(CHF 37,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Over 100 hands-on recipes to effectively solve real-world data problems using the most popular R packages and techniques

About This Book

  • Gain insight into how data scientists collect, process, analyze, and visualize data using some of the most popular R packages
  • Understand how to apply useful data analysis techniques in R for real-world applications
  • An easy-to-follow guide to make the life of data scientist easier with the problems faced while performing data analysis

Who This Book Is For

This book is for those who are already familiar with the basic operation of R, but want to learn how to efficiently and effectively analyze real-world data problems using practical R packages.

What You Will Learn

  • Get to know the functional characteristics of R language
  • Extract, transform, and load data from heterogeneous sources
  • Understand how easily R can confront probability and statistics problems
  • Get simple R instructions to quickly organize and manipulate large datasets
  • Create professional data visualizations and interactive reports
  • Predict user purchase behavior by adopting a classification approach
  • Implement data mining techniques to discover items that are frequently purchased together
  • Group similar text documents by using various clustering methods

In Detail

This cookbook offers a range of data analysis samples in simple and straightforward R code, providing step-by-step resources and time-saving methods to help you solve data problems efficiently.

The first section deals with how to create R functions to avoid the unnecessary duplication of code. You will learn how to prepare, process, and perform sophisticated ETL for heterogeneous data sources with R packages. An example of data manipulation is provided, illustrating how to use the 'dplyr' and 'data.table' packages to efficiently process larger data structures. We also focus on 'ggplot2' and show you how to create advanced figures for data exploration.

In addition, you will learn how to build an interactive report using the 'ggvis' package. Later chapters offer insight into time series analysis on financial data, while there is detailed information on the hot topic of machine learning, including data classification, regression, clustering, association rule mining, and dimension reduction.

By the end of this book, you will understand how to resolve issues and will be able to comfortably offer solutions to problems encountered while performing data analysis.

Style and approach

This easy-to-follow guide is full of hands-on examples of data analysis with R. Each topic is fully explained beginning with the core concept, followed by step-by-step practical examples, and concluding with detailed explanations of each concept used.


Over 100 hands-on recipes to effectively solve real-world data problems using the most popular R packages and techniquesAbout This BookGain insight into how data scientists collect, process, analyze, and visualize data using some of the most popular R packagesUnderstand how to apply useful data analysis techniques in R for real-world applicationsAn easy-to-follow guide to make the life of data scientist easier with the problems faced while performing data analysisWho This Book Is ForThis book is for those who are already familiar with the basic operation of R, but want to learn how to efficiently and effectively analyze real-world data problems using practical R packages.What You Will LearnGet to know the functional characteristics of R languageExtract, transform, and load data from heterogeneous sourcesUnderstand how easily R can confront probability and statistics problemsGet simple R instructions to quickly organize and manipulate large datasetsCreate professional data visualizations and interactive reportsPredict user purchase behavior by adopting a classification approachImplement data mining techniques to discover items that are frequently purchased togetherGroup similar text documents by using various clustering methodsIn DetailThis cookbook offers a range of data analysis samples in simple and straightforward R code, providing step-by-step resources and time-saving methods to help you solve data problems efficiently.The first section deals with how to create R functions to avoid the unnecessary duplication of code. You will learn how to prepare, process, and perform sophisticated ETL for heterogeneous data sources with R packages. An example of data manipulation is provided, illustrating how to use the "e;dplyr"e; and "e;data.table"e; packages to efficiently process larger data structures. We also focus on "e;ggplot2"e; and show you how to create advanced figures for data exploration.In addition, you will learn how to build an interactive report using the "e;ggvis"e; package. Later chapters offer insight into time series analysis on financial data, while there is detailed information on the hot topic of machine learning, including data classification, regression, clustering, association rule mining, and dimension reduction.By the end of this book, you will understand how to resolve issues and will be able to comfortably offer solutions to problems encountered while performing data analysis.Style and approachThis easy-to-follow guide is full of hands-on examples of data analysis with R. Each topic is fully explained beginning with the core concept, followed by step-by-step practical examples, and concluding with detailed explanations of each concept used.
Erscheint lt. Verlag 29.7.2016
Sprache englisch
Themenwelt Sachbuch/Ratgeber Freizeit / Hobby Sammeln / Sammlerkataloge
Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
ISBN-10 1-78439-204-9 / 1784392049
ISBN-13 978-1-78439-204-8 / 9781784392048
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 18,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
The Process of Leading Organizational Change

von Donald L. L. Anderson; Inc. SAGE Publications

eBook Download (2023)
Sage Publications (Verlag)
CHF 102,55
Interpreter of Constitutionalism in Japan

von Frank O. Miller

eBook Download (2023)
University of California Press (Verlag)
CHF 48,80